首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

2.
由于南京长江第四大桥北锚碇沉井基础支撑在分布不均匀的卵砾石层上,给沉井是否能够顺利下沉至设计标高带来诸多不确定因素,沉井不排水下沉后期下沉困难,开启了沉井井壁预先埋设的空气幕,助沉作用效果明显,主要介绍该沉井砂套结合空气幕助沉措施的设计、应用及作用效果等。  相似文献   

3.
2016年h1月23日,武汉杨泗港长江大桥工地1号塔沉井空气幕助下沉用时42min,沉井下沉1.47m。  相似文献   

4.
南京四桥北锚碇基础采用69×58m矩形沉井,沉井顶面高程+4.30,刃脚高程-48.50m,置于密实圆砾石层,下沉深度为52.8m。为使沉井顺利下沉到位,同时减少对长江大堤的不利影响,沉井前期采用深井降水和泥浆泵吸泥的排水下沉方案,后期采用空气吸泥机吸泥的不排水下沉方案。为了不破坏沉井底部圆砾石层,最后启用空气幕助沉措施,使沉井沉至设计位置。  相似文献   

5.
马鞍山长江大桥南锚碇采用沉井基础,沉井入土深度超过50m,其施工采用“3次接高,3次下沉”的工艺:第1次下沉采用降排水措施,第2次下沉采用半排水措施,第3次下沉采用不排水措施。在沉井第3次下沉过程中,开启空气幕助沉,显著加快了下沉速度。沉井下沉期间,采用综合监控手段,保证了沉井顺利、精确下沉。实践证明,该桥所采用的沉井下沉方案科学合理,下沉到位后沉井几何姿态良好。  相似文献   

6.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

7.
马鞍山长江公路大桥北锚碇沉井下沉施工技术   总被引:2,自引:1,他引:1  
在马鞍山长江大桥北锚碇沉井基础下沉施工过程中,根据地层的深入和地质情况变化,先采取沉井四周布置降水井、水力吸泥机取土的排水下沉法,后期则采取搭设钢平台、安装龙门吊等设备进行不排水吸泥下沉的方法,终沉阶段启动空气幕助沉措施,确保了沉井下沉的稳定,在加快施工进度、提高工程质量、降低施工成本等方面取得了显著效果.  相似文献   

8.
武汉鹦鹉洲长江大桥为三塔四跨钢-混结合梁悬索桥,桥跨布置为(200+2×850+200)m。该桥北锚碇基础为"带孔圆环+十字撑"结构沉井,圆环内沿圆周均布16个直径8.7m的井孔。为降低沉井施工对周围房屋、长江大堤的安全影响,沉井施工前在其外围10m处设置地下连续墙结构进行防护。沉井共分8节,采取在底节上接高第二节后下沉9m,再接高3节下沉14m,最后接高3节下沉22m的"3次接高3次下沉"施工方案。为防止出现翻砂事故,采取沉井内侧环向均匀取土、中间缓吸反压的技术措施,采用5孔单孔直径1mm的空气幕气龛助沉。在沉井即将到达设计标高时,在沉井内侧沿沉井壁吸泥形成环形沟槽、开动空气幕实现沉井精确就位。采取长距离管道水力排渣施工方法,有效避免对城市环保和路面交通的影响。  相似文献   

9.
结合江阴长江大桥空气幕沉井模型试验,对空气幕沉井φ3mm规格气龛从减阻效果,单个气龛的耗气量,有效作用面积,堵塞情况和预防堵塞措施,使用效果等几个方面进行了一定深度的探讨,对我国空气幕沉井φ3mm规格气龛的研究工作及其广泛应用于实际工程具有积极意义。  相似文献   

10.
马鞍山长江公路大桥北锚碇基础沉井施工中,通过有效的科学研究及现场落实,利用换填层换填形状及工艺的改进,提高了换填基础的整体强度;利用合理的钢壳拼装顺序保证了大体积沉井的现场制作精度;利用降排水下沉、不排水下沉的有效组合保证了沉井的快速下沉;利用下沉定位、纠偏技术和监控技术解决了下沉过程中的精度问题;利用空气幕助沉工艺解决了终沉阶段下沉困难的问题;利用首次对分区隔墙封底技术保证了沉井基础的顺利封底;利用分组施工技术解决了填芯施工进度慢的问题;现将这些经验总结出来,供今后类似工程参考。  相似文献   

11.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

12.
正2016年4月23日,武汉杨泗港长江大桥工地1号塔沉井空气幕助下沉用时42 min,沉井下沉1.47m。主跨1 700m的武汉杨泗港长江大桥是世界上跨度最大的双层悬索桥。大桥的2个桥塔基础均为沉井基础,沉井平面尺寸长77.2 m,宽40 m,相当于8个篮球场的面积大小。位于汉阳岸的1号塔沉井高38m,其中底端约6m的高度要深入到硬塑状的黏土层中。  相似文献   

13.
武汉杨泗港长江大桥主桥为主跨1 700m的双层钢桁梁悬索桥,2个桥塔墩均采用沉井基础,沉井基底持力层均为硬塑黏土层,其中,1号和2号桥塔墩沉井需分别在硬塑黏土层中下沉6.2m和10.6m。2个桥塔墩沉井均采用不排水法下沉,当沉井刃脚进入硬塑黏土层后,井孔内的硬塑黏土采用绞吸法取土,先利用潜水挖泥机对土体进行强制式切削,再利用吸泥管将钻屑与水的混合物排出;刃脚下方的硬塑黏土采用水下爆破法取土,先将硬塑黏土炸松后抛掷到井孔内,再利用潜水挖泥机取出;沉井下沉时还采取了空气幕助沉技术。最终2个桥塔墩沉井基础在硬塑黏土中均顺利下沉到位。  相似文献   

14.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

15.
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础设计阶段,综合考虑地理、地质、水文、工期等因素,比选确定采用圆形沉井基础;在城市建筑物密集区域,并紧邻长江防洪大堤,沉井基础下沉会对临近建造物造成安全威胁,也会破坏城市生态环境。为解决建造物密集区域建造超大沉井下沉关键技术难点,结合工程实际,通过调查类似工程案例,采取科学试验、数据模拟分析、监控监测等研究方法,评估、确定了结构防护、工艺优化、管道排渣、新型空气幕助沉等关键技术,证明了在城市市区、场地狭小、防护要求高等特殊条件下建造超大沉井的可行性,为城市基建工程环境保护提供借鉴和参考。  相似文献   

16.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

17.
沉井周边地质情况是沉井的设计及沉井下沉施工的主要因素,沉井的平稳下沉及成功下沉到设计位置是沉井施工的关键,因此有必要对沉井下沉过程的沉井仞脚土压力和井壁摩阻力进行实时监测,以指导沉井的信息化施工。四川金沙江向家坝水电站10号沉井仞脚土压力和井壁摩阻力的实时监测结果表明,监测数据真实地反映了沉井周边的地质情况,指导了沉井的信息化施工。  相似文献   

18.
现在市政公共工程的给水排水工程的城市雨污水泵站,雨污水管道的工作井、接收井等结构多采用沉井基础。沉井基础施工时占地面积小,坑壁不需设临时支撑和防水围堰,操作简便,无需特殊的专业设备。沉井施工时,相关参考书要求计算下沉系数,而实际下沉系数与沉井的下沉关系有时并不明显。对沉井下沉系数在沉井下沉时的作用进行了一些探讨,有关经验可供相关专业人员参考。  相似文献   

19.
《上海公路》2013,(3):I0003-I0004
近日,浙江省交通设计院申请的“一种沉井和钢管桩的水中组合基础的施工方法”取得了发明专利证书。本发明属于土建工程建造技术领域,具体涉及一种适用于具有深厚覆盖层的沉井和钢管桩的水中组合基础及其施工方法。本发明包括:(1)打入钢管桩,利用钢桁架将钢管桩连成整体;在钢桁架上设置千斤顶。(2)将沉井的底节的钢壳浮运到钢管桩外侧,组装成整体,通过吊杆与千斤顶固定连接;浇筑沉井混凝土。(3)利用千斤顶控制沉井下沉;下沉到设计标高后拆除钢桁架,利用沉井做工作平台,振动下沉钢管桩至预制高度。(4)浇筑沉井封底混凝土;架设沉井顶板并对沉井底部土层进行加固。  相似文献   

20.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号