首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
黄冈公铁两用长江大桥主桥为主跨567 m的钢桁梁斜拉桥,桥塔为H形混凝土结构.该桥桥塔塔柱采用液压爬模施工;下横梁采用落地式支架施工,与下塔柱节段混凝土同步浇筑;中塔柱施工时设置2道临时横撑,以改善塔柱施工阶段的受力;上横梁采用梯形桁架施工,与塔柱混凝土异步施工,上、下横梁混凝土均分2层浇筑.采用MIDAS有限元软件建模对桥塔施工过程进行分析,结果表明:上、下横梁混凝土分层浇筑时混凝土应力满足规范要求,且可有效降低现浇支架荷载;临时横撑的设置保证了施工阶段桥塔应力及位移均满足要求;上横梁梯形桁架支点处塔柱局部应力满足要求.  相似文献   

2.
甬江左线特大桥主桥为主跨468m的双塔双索面钢-混混合梁铁路斜拉桥,桥塔高177.91m,桥面以上采用倒Y形,桥面以下内缩为钻石形。桥塔采用全自动液压爬模施工,下横梁采用支架现浇法施工,在工序上采用"先塔后梁"的异步施工技术。为控制桥塔施工过程应力和变形,确保施工过程安全、可靠,采用MIDAS Civil 2010软件建立桥塔有限元模型,对桥塔施工全过程进行模拟分析。结果表明:在桥塔施工过程中,下塔柱和中塔柱根部应力均满足施工要求;桥塔最大横向累计位移24mm,最大竖向累计位移29.7mm,说明主动横撑有效改善了塔身应力和线形。实际施工中桥塔横向位移偏差控制在2cm范围内。  相似文献   

3.
果子沟大桥为大跨度钢桁梁斜拉桥,桥塔为阶梯形钢筋混凝土结构,塔高分别为209.5 m和215.5 m,共设置4道横梁,构造复杂,塔柱与横梁异步施工难度大。为确保施工过程安全、合理,采用空间有限元法模拟桥塔施工阶段,计算分析塔柱的应力和位移。结果表明:塔柱各施工阶段预偏量设置合理;斜塔柱施工过程中2道临时横撑及在梁端加顶力减小了斜塔柱根部混凝土开裂的可能,保证塔柱与横梁异步施工过程中整体斜塔柱的线形、应力和稳定性满足设计与施工要求。  相似文献   

4.
为了提高双向倾斜桥塔在施工过程中的稳定性和安全性,需要合理设计横撑作为临时结构,并对其进行施工控制.以某斜塔空间扭索双索面斜拉桥方案为背景,在对全桥模型进行复核和施工阶段计算后,提出横撑设置方案;对主动横撑施工过程进行监控,并对施工误差进行分析,对拆除横撑的施工控制方法及横撑拆除时机进行研究.得出如下结论:在主动横撑设计时应主要控制中塔柱根部混凝土截面应力,以内力控制为主、变形控制为辅的原则确定主动横撑预顶力;主动横撑的预顶力值确定应该包括模型受力计算值、温度影响值以及焊接变形所产生的内力变化值;施工过程中需要提高塔柱施工、横撑焊接的质量,并合理安排横撑的拆除时机.  相似文献   

5.
介绍了福州市淮安大桥主桥桥塔的外形轮廓,塔柱各构件的结构尺寸及其施工方法;确定了桥塔施工控制的原则;给出了施工过程中塔身外形控制参数及允许误差;采用三维空间程序对该桥塔进行施工控制分析,考虑了塔柱的施工预抬量和预偏量,并给出了理论计算值;确定了斜塔柱施工过程中临时横撑的加载位置及横撑顶力的控制标准。  相似文献   

6.
为了减小斜拉桥曲线形钻石桥塔在施工阶段和运营阶段的拉应力,防止混凝土桥塔出现开裂病害,以主跨480m的宜宾盐坪坝长江大桥为例,开展桥塔抗裂设计技术研究。采用MIDAS Civil程序建立全桥空间有限元模型,计算桥塔在施工阶段和成桥运营状态下的内力,研究桥塔竖向预应力、斜拉索横向偏心布置、塔柱临时横撑及对拉、环向预应力等措施对桥塔应力的改善作用,以及桥塔混凝土掺加钢纤维对材料强度的提升效果。结果表明:曲线形钻石桥塔受力复杂,在塔柱受拉区设竖向预应力是有效的抗裂措施;斜拉索适当向曲线外侧横向偏心布置可减小塔柱横向弯矩;临时横撑及对拉既可减小施工期塔柱拉应力,又可改善塔柱成桥状态的应力;环向预应力为塔柱水平方向提供一定压应力储备;桥塔混凝土中掺加少量钢纤维对强度提升作用不大,可减小桥塔表面非受力裂缝。  相似文献   

7.
为提高内倾式斜拉桥桥塔施工的安全稳定性,需设计合理的桥塔施工及临时横撑施工方案,并对其施工过程中进行监控。以某在建内倾式斜拉桥桥塔为例,根据模型计算,对原桥塔施工临时横撑施工方案进行了优化,优化后的新方案在确保安全的前提下可少布置一道临时横撑。根据模型计算出各临时横撑的顶推力,并对其在最不利施工阶段下进行验算,验证了顶推力的可行性。并在塔柱根部关键截面以预埋应变计的方式对桥塔施工过程进行监控,实测结果与模型计算结果比较表明,模型计算结果更加保守安全,新方案桥塔施工有足够的安全余量。通过以上的研究说明,新方案具有经济可行和安全性。  相似文献   

8.
平潭海峡公铁两用大桥元洪航道桥为主跨532m的钢桁混合梁斜拉桥,桥塔为H形钢筋混凝土结构,塔高200m。桥塔施工过程中需考虑抗台风,若不设置临时横撑,桥塔施工至24号节段后中塔柱根部受力较大,设计采用桁架式临时横撑结构(采用2排桁架式结构,设置于桥塔20号、21号节段间,2排桁架间通过联结系X1连接)改善桥塔受力,横撑两端与桥塔采用铰接形式(形式为刚性铰,设计成抗剪、抗拉受力体系,承受最大拉力为5 509kN,最大剪力为1 428kN);采用MIDAS Civil及Fea有限元软件对横撑进行结构受力分析,并对桥塔施工过程中台风作用下桥塔自身受力进行分析,结果表明,桁架式临时横撑和桥塔受力满足要求,该横撑可减少桥塔中塔柱根部弯矩20%以上,效果显著。  相似文献   

9.
鄂东长江公路大桥桥塔拉杆及支撑系统设计与施工   总被引:3,自引:2,他引:1  
鄂东长江公路大桥为主跨926 m的双塔双索面半漂浮体系混合梁斜拉桥.北桥塔高度达242.5 m,采用"凤翎"式结构,下塔柱外倾,中塔柱内倾,施工过程中为避免桥塔根部混凝土应力过大出现裂缝,在中、下塔柱设置主动拉杆和主动横撑.主要阐述鄂东长江公路大桥北桥塔下塔柱拉杆及中塔柱水平支撑系统的设计与施工.  相似文献   

10.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面矮塔箱桁组合梁斜拉桥,2号和3号主墩均采用门形钢筋混凝土桥塔,塔高分别为155m和130.5m。桥塔设上、下2道横梁,下塔柱外倾,上塔柱内倾。该桥塔柱采用液压爬模分节施工,在两侧上、下塔柱间分别设置钢管横撑和临时对拉钢绞线;下横梁采用落地支架法施工,上横梁采用"牛腿+支架"法施工,上、下横梁混凝土与塔柱同步浇筑;索塔锚固区采用钢锚梁拉索锚固体系与预应力锚固体系相结合的方式锚固,塔柱预应力采用"#"形布置,利用定位支架精确定位钢锚梁。在施工期间,采用"零状态"测量+相对设站法定位等措施控制塔柱线形;并采用高性能混凝土抗裂技术防止大体积混凝土表面开裂。  相似文献   

11.
本文依托舟岱跨海大桥DSSG01标的双塔双索面钢箱梁斜拉桥,对异形索塔的临时横撑设计及计算进行了分析,该索塔为钻石型异形结构,桥址区位于浙江沿海海域,为保证在本区域最恶劣的气候条件下,索塔中塔柱和下塔柱施工过程不出混凝土局部应力超标,及产生超过设计要求的横向位移,在塔柱施工过程中增设主动式临时横撑。本文采用MidasCivil有限元软件对索塔施工的各工况进行分析,研究增加临时横撑后对索塔受力的影响情况。  相似文献   

12.
主动横撑对塔柱的安全性和稳定性有较大的影响,确定横撑结构的位置和顶推力是塔柱施工过程中的关键步骤。通过对主动横撑的位置确定要领以及顶推力的计算的详细阐述,分析了主动横撑的施工控制要点。以某独塔空间双索面斜拉桥方案为背景,采用Midas软件进行了施工过程模拟。结果表明,采用横向支撑并施加合理的预顶力能够有效的控制住主塔在施工过程中的混凝土拉应力,且有效的减小主塔控制截面弯矩,对主塔逐节施工起到了关键性的作用。  相似文献   

13.
新沙哈·阿曼纳特大桥主桥为(115+3×200+115)m连续预应力箱梁矮塔斜拉桥.主梁采用带箱内斜撑的单箱单室薄壁箱梁;斜拉索采用单索面布置,在桥塔处从上塔柱转向鞍管穿过桥塔,两端锚固在主梁顶板与斜撑交汇处;桥塔由底座、下塔柱和上塔柱构成.上部结构箱梁0号块及1号块均在支架上现浇施工,墩顶临时固结形成T构,其它节段采用三角挂篮对称悬臂浇筑施工,合龙段采用合龙吊架施工,箱梁边跨现浇段采用支架现浇施工;桥塔采用定型钢模分次浇注施工;为便于箱梁现浇挂篮的安装,斜拉索施工滞后箱梁施工1个节段.该桥的结构特点最大限度地发挥了矮塔斜拉桥的工程经济性.  相似文献   

14.
某(105+180+105) m波形钢腹板-PC组合梁矮塔斜拉桥桥塔采用外倾式分肢双塔柱,外倾15°,外观呈Y形。针对桥塔先塔后梁施工过程中上塔柱塔根内侧拉应力和塔顶横向变形过大的问题,提出先塔后梁增加临时对拉索和塔梁同步施工2种施工优化方案,采用MIDAS Civil软件建立有限元模型,研究各施工优化方案对桥梁结构受力性能的影响,并进行综合比选。结果表明:施工过程中,2种施工优化方案均能将塔根拉应力减小至材料抗拉强度设计值以下,且塔梁同步施工方案塔顶横向变形比先塔后梁施工方案最大减小40.2%;成桥状态时,2种施工优化方案的斜拉索成桥索力值与设计成桥索力值比较接近,且误差均在5%以内,2种施工优化方案对成桥质量控制无不利影响;通过工期、工程造价、工程质量和施工安全方面的比较,经综合考虑,该桥桥塔施工采用塔梁同步施工方案。工程实践证明塔梁同步施工方案实施效果较好。  相似文献   

15.
巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压爬模施工;钢-混结合段高3 m,内部采用PBL键+剪力钉+高强度钢锚杆+高强度混凝土结构形式。在中塔柱设置钢管临时横撑控制塔柱线形及应力;下横梁采用落地支架法分层施工,与对应塔柱同步浇筑;钢-混结合段混凝土采用C60细石补偿收缩混凝土+高强度灌浆料,保证了混凝土施工质量;采用工厂“2+1”立体匹配制造、“提升站+运输栈桥”钢塔节段转运等技术,并研制15 000 t·m超大型塔吊,实现了钢塔柱大节段的制造、整体滩地运输和吊装;钢塔节段间采用栓焊组合连接形式,通过设置工艺隔板、双面坡口等措施控制了钢塔焊接变形;利用定位桁架临时锁定钢塔合龙段实现了钢塔的精确合龙,定位桁架受力及变形均满足要求。  相似文献   

16.
平潭海峡公铁两用大桥处于典型的大风海洋环境,其FPZQ-3标段的3座通航孔桥均为双塔双索面钢桁-混凝土混合梁斜拉桥,均采用H形钢筋混凝土桥塔,塔身最高达200m。塔柱标准节段长6m,采用液压爬模施工,在爬模架体外侧采用冲孔钢板网进行全封闭防风;下横梁采用钢管支架施工、上横梁采用钢牛腿+支架施工,上、下横梁与塔柱均采用异步施工,在下横梁下方设1道空间桁架式横撑进行临时锁定;每个桥塔配备2台D1100-63V型塔吊进行整体吊装。  相似文献   

17.
摩洛哥穆罕默德六世大桥主桥为(183+376+183)m双塔斜拉桥,全曲面梭形混凝土桥塔4个塔肢在两端合并整体,在与基础相连的下塔柱处采用混凝土裙板连接,与主梁采用格构式纵横梁固结体系。桥塔塔肢采用爬模施工,塔梁固结段采用托架施工。桥塔施工过程中,在桥塔中心线设置多功能钢管支架结构,作为布料机平台、施工平台及电梯附着结构;采用大调幅多卡自动爬升模板,运用三角插板实现截面变化,爬模结构内设计可调节斜撑杆件,调节架体结构倾斜角度;下塔柱施工时,节段接缝采用装饰槽,实现裙板装饰花纹效果,在横桥向裙板交汇处设置预应力加强板,实现塔肢和裙板同步施工,并在下塔柱设置对拉结构,控制桥塔线形;塔肢和格构式纵横梁固结段一起浇筑;在上塔柱设置对撑结构,控制桥塔受拉应力。  相似文献   

18.
广州增城大桥采用飞燕式,无横撑外加斜靠拱的设计方案,主跨设计为(30+100+30)m。全桥采用支架施工的方法,连接主拱和斜拱的横撑和支撑斜拱的临时支架有多种施工顺序。采用空间有限元模型详细计算分析了不同横撑的安装及斜拱临时支架拆除顺序对拱桥结构受力的影响,得到了较优的施工方法,对此类桥梁施工具有较大的参考价值。  相似文献   

19.
九江长江公路大桥北塔下横梁施工方案研究   总被引:3,自引:0,他引:3  
九江长江公路大桥主桥采用(70+75+84)m+818 m+(233.5+124.5)m双塔不对称混合梁斜拉桥,H形桥塔塔肢间设上、中、下3道横梁.为确定该桥北塔下横梁施工方案,对同步施工方案、异步施工方案、异步施工+主动横撑方案进行分析.结果表明:异步施工+主动横撑方案结构受力合理、施工工期短、施工风险小,确定为下横梁最终施工方案.经优化,主动横撑采用2根Φ1200 mm×12 mm的螺旋焊管制作,每根施加2000 kN 水平推力,在下横梁第一层混凝土强度达到90%之后,施加第一批横向预应力前撤掉水平推力;采取增加塔柱混凝土凿毛厚度、加强局部振捣的方法,保证新老混凝土结合面混凝土的施工质量.  相似文献   

20.
松原市天河大桥北汊主桥为(40+100+266+100+40)m双塔空间索面自锚式悬索桥,桥塔为混凝土结构的人字形塔,内斜角度大。塔柱施工期间昼夜温差大,为研究塔柱施工期间温度的影响,采用有限元软件MIDAS Civil建立桥塔施工的仿真模型,在桥塔施工的12个关键施工工序中,选取其中3个关键工序,分析不同荷载组合下温度荷载对施工过程中塔柱的强度、刚度的影响。结果表明:温度的上升与下降对塔柱变形的影响较小,但对其塔柱应力的影响较大;施工过程忽略温度荷载的作用,会导致塔柱拉应力超出限值而产生裂缝;桥塔施工期间,应考虑温度荷载的影响,加强温度监控,采取一定的温控措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号