首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
高速列车在桥梁墩台基础上产生的动荷载是计算桩基础累积沉降的重要参数。系统地测试了不同车速和车型在桥墩不同部位引起的动位移、加速度及墩身动应变,得到了不同跨度桥梁基础的动荷载参数。结果表明:桥墩动力响应(动位移和加速度)从梁端、墩顶到承台顶衰减显著。动位移与轴重、基础与地基土的整体刚度密切相关。桥梁支座具有降低加速度的作用。桥跨长度越长,动荷载越大,动荷载幅值约为动荷载峰值的20%~30%。动荷载可以用正弦函数模拟,频率与列车行驶速度和车厢长度有关。上述结论可为高速铁路桥墩基础的设计和计算作为参考。  相似文献   

2.
林峰 《铁道勘察》2023,(3):149-154
地铁列车振动引起的动力响应是地铁营运期间的重点问题。为研究地铁列车振动荷载作用下近接隧道的动力响应,依托工程实例,以激振力函数法模拟列车振动荷载,利用FLAC3D软件建立隧道及周围土体三维数值模型,对近接隧道结构不同位置的振动加速度、应力、位移响应进行模拟分析。结果表明:(1)隧道底板的加速度响应大于顶板,左侧壁、中板和右侧壁,中部位置的测点加速度峰值最大;(2)隧道左侧壁和右侧壁上测点距底板距离越大,应力响应越小,而中板上测点的应力响应基本不随距离变化;(3)隧道底板上各测点竖向动位移均随时间不断增大,并且大致可分为3个阶段,随着底板上测点与地铁隧道的距离增加,其竖向动位移量呈线性减小。  相似文献   

3.
研究目的:为研究大轴重列车作用下桥梁结构的动力响应,本文以30 t大轴重列车和重载铁路线上常用跨度32 m预应力混凝土简支T梁为研究对象,结合现场实测数据,基于多体动力学理论和有限元法建立大轴重列车-轨道-桥梁三维耦合精细化有限元模型,并验证有限元模型的准确性。通过计算大轴重列车作用下桥梁结构的动力响应,分析大轴重列车编组长度、列车轴重、列车运行速度以及桥墩高度等因素对桥梁结构动力响应的影响规律。研究结论:(1)当列车编组数达到6节以后,列车编组数增加仅影响桥梁结构的动力响应持续时间,不会对桥梁结构的动力响应峰值产生影响,在计算长大编组列车通过中小跨度桥梁时可简化为6节编组进行计算;(2)桥梁结构的动力响应与重载列车的轴重有较明显的相关性,桥梁跨中竖向位移和跨中横向位移均随着列车轴重的提高而增加,增幅呈近似线性增加的趋势;桥梁跨中竖向加速度和跨中横向加速度均随着列车轴重的提高而逐渐增加,且增幅越来越大;(3)桥梁结构的动力响应均随着列车运行速度的提高而增加,跨中加速度响应随列车运行速度的提高增幅比跨中位移响应增幅大;(4)桥梁墩高的变化对桥梁结构的竖向动力响应影响较小,而对横向动力响应影响较大;(5)本研究成果可为重载铁路桥梁的设计和既有线铁路桥梁强化改造提供参考。  相似文献   

4.
为研究制动荷载作用下桥上无砟轨道动力响应问题,建立车辆子系统模型和无砟轨道-桥梁子系统模型。根据高速列车制动减速度特性曲线确定列车制动力,利用Hertz理论求解轮轨力,通过交叉迭代法求解有限元数值方程。以4节编组的CRH2型动车组在桥上无砟轨道制动为例,进行系统动力响应分析。研究结果表明:轨道、桥梁结构的纵竖向位移和加速度均逐层递减,梁端处轨道结构的竖向振动比跨中处大;列车制动过程中列车速度逐渐减小引起轨道结构的竖向动力响应也减小;列车停车后,轨道结构和桥梁的纵向位移反向突变、纵向加速度突变,随后都有自由衰减的趋势;列车停车瞬间,列车和桥梁出现纵向最大振动。研究成果可为桥上无砟轨道的设计提供理论支持。  相似文献   

5.
为研究基坑开挖中列车荷载的影响,通过试验测试了列车荷载引起的环境振动,并分析了列车荷载作用对开挖基坑的影响.试验结果表明:列车荷载引起的场地响应随远离铁路而逐渐减小,在一定范围内,响应峰值衰减很快;在距铁路轨道10.2 m的位置处,加速度峰值有短暂的突升;竖向加速度的衰减速度明显大于水平向加速度,在振源附近竖向加速度大于水平向,但远离轨道一定距离后,竖向加速度小于水平向加速度;轨道处的竖向位移小于水平向位移,但在远离轨道的一定范围内竖向位移峰值大于水平向位移,到靠近基坑位置水平位移再次大于竖向位移;从试验及监测结果看,短时间内列车荷载对临近基坑的影响很小,由于基坑暴露的时间较短,可以不作为主要的风险源.  相似文献   

6.
桥梁在转体施工过程中通常要封闭其所跨越的铁路或公路,因而对交通特别是城市交通造成较大影响。本文以秦皇岛市西部快速路工程跨越京哈铁路转体施工桥梁为依托,利用加速度传感器测试了不同类型列车通过时球铰附近的地基振动情况,并运用有限元软件Midas对测得的加速度时程曲线进行了分析,评估了列车诱发的振动对转体桥稳定性的影响。研究结果表明:列车诱发的振动不会对该转体施工桥梁的稳定性产生很大的影响;梁体各点振动位移和加速度远小于本地区抗震设防烈度值;梁体不会由于列车诱发的地面振动而晃动,更不会倾覆;桥梁在转体施工过程中可以不封闭所要跨越的铁路。其它类似桥梁可采用同样的分析方法评估列车诱发振动对转体施工桥梁稳定性的影响,从而决定是否封闭交通。  相似文献   

7.
对于高速铁路大直径盾构隧道,研究并讨论列车振动荷载对隧道结构安全性具有重大意义。以佛莞城际铁路狮子洋隧道工程为背景,基于ANSYS有限元方法,采用列车-轨道系统确定列车荷载后,计算不同工况下高速列车振动荷载对软硬不均地层大直径盾构隧道结构的影响,选取不同计算模型对比分析往复荷载作用下隧道地基累积变形的特征。计算表明:(1)双线同时有列车荷载作用时,产生的动力响应更为显著,且与两车间隔的时间有关,当间隔时间为振动周期的倍数时,振动效应最大;(2)较之主应力,列车振动对隧道位移和加速度的影响更加明显;(3)双线列车振动发生时间的偏差会引起响应的振动时程曲线产生约等于Δt的偏移现象,且振动幅值也会偏移,结构的动力响应与地层的动力响应(位移、加速度和主应力)存在相似的变化规律;(4)随着列车运行时间的累加,隧道基底土的累积塑性变形逐渐增大,但随着时间推移后期的增长速率明显减慢;(5)针对佛莞城际铁路狮子洋隧道,近东莞侧隧道基底以砂土为主,建议采用Anand J.Puppala模型进行累积塑性沉降计算;近广州侧隧道基底以淤泥为主,建议采用DingQing Li模型进行累积塑性沉降计算。  相似文献   

8.
滑道是转体桥梁的关键部件,滑道不平顺将直接影响转体过程中桥梁的安全与稳定。为研究滑道不平顺对大跨度转体桥梁的动力性能影响规律及其合理取值问题,基于某大跨度跨线桥梁转体施工现场实时监测并结合数值模拟分析方法,开展不同程度条件下滑道不平顺对转体桥梁关键部位受力、变形、振动等动力响应影响研究。研究结果表明:实测转体桥梁滑道不平顺差异性较大,其数值介于0~15 mm之间,滑道不平顺的存在会导致转体桥梁单侧发生较小程度的倾斜;转体过程中,滑道不平顺差异变化速率与转体箱梁梁端振动响应成正比关系,其变化速率越大,梁端振动越剧烈,且环形滑道不平顺的数值差异也引起转体桥梁端振动响应不一致;0,5,10,15,20 mm和22 mm六种滑道不平顺条件下,转体桥梁主梁线形、撑脚应力、梁端竖向加速度和梁端动挠度整体表现为随着滑道不平顺数值增加而逐渐增大的趋势;滑道不平顺数值超过15 mm后,撑脚应力和桥梁振动响应明显增大,桥梁安全与稳定性降低,建议将转体桥梁滑道不平顺安全控制值确定为≤15 mm,以供类似转体桥梁结构参考使用。  相似文献   

9.
根据桥上CRTSⅡ型轨道结构形式,考虑高速列车与无砟轨道、桥梁之间的相互作用,建立基于新型车辆单元和无砟轨道-桥梁单元的车辆-无砟轨道-桥梁纵垂向耦合振动模型。运用有限元方法和Lagrange方程,分别推导车辆单元、无砟轨道-桥梁单元的刚度、质量和阻尼矩阵,建立有限元数值方程。考虑轨道平顺和轨道不平顺两种工况,求解有限元数值方程,分析梁端和跨中动力特性。计算结果表明,该模型及程序能够反映轨道结构的竖向振动响应。施加轨道不平顺,轮轨作用力增大了50%左右,梁端处钢轨的竖向加速度增加了6.5倍左右,跨中处从10 m/s~2增加到30 m/s~2。每种工况下,梁端和跨中处轨道结构的竖向位移、竖向加速度分别逐渐减小,梁端处轨道结构的振动及其位移变化都比跨中处大。  相似文献   

10.
研究目的:列车通过桥梁时,与桥梁的耦合作用会影响桥上列车的行车安全性。大跨度斜拉桥由于自身结构柔度较大,其与列车的耦合作用往往会导致较大的桥梁响应,列车的行驶安全性更加需要予以重视。本文以某大跨度四线铁路斜拉桥为例,采用计算机模拟方法进行车-桥耦合分析,讨论不同列车类型、车速、列车行驶位置及双车交会下的桥梁及列车响应。研究结论:(1)不同速度等级下,桥梁振动响应呈往复变化,当列车施加的激励频率接近桥梁低阶自振频率时,桥梁振动接近峰值;车辆响应随车速增加而增大;(2)车辆类型对桥梁响应影响较大,其中货车C80的各项车辆响应指标更大;(3)车辆运行轨道对桥梁加速度和竖向位移的影响较小,对车辆响应的影响也较小,但对桥梁的横向位移影响较大;(4)双车运行情况下,随着两车入桥差的增加,桥梁的响应有所改善,不同的入桥距离对车辆响应的影响不明显;(5)本研究成果对类似大跨度斜拉桥的设计具有一定的参考价值。  相似文献   

11.
研究目的:准确测算船撞作用下桥梁的结构动力响应,对评估因船—桥碰撞后桥梁响应而引起的列车脱轨分析具有重要意义。本文围绕铜陵公铁两用长江大桥论述船撞桥墩引起列车脱轨分析的一般流程,首先通过ANSYS/LS-DYNA非线性有限元软件模拟10 000 t级与5 000 t级船舶在最高、常规以及最低通航水位下满载正撞和侧桥向20°撞击桥梁的主塔和辅助墩,得出在各船撞工况下碰撞力-时程曲线。然后将船舶撞击时程曲线作为动力荷载输入至整桥有限元模型中,计算桥梁结构关键部位尤其是主梁的横向位移和加速度响应。研究结论:(1)在最高通航水位下,船舶满载正撞桥墩产生的撞击力最大;在该最不利工况下,撞击作用对桥梁结构动力响应以及列车的脱轨风险具有较大影响;(2)当3#主塔受到10 000 t级船舶撞击时,导致2#桥墩墩顶主梁的横向加速度达到0.922 m/s2,未超过列车脱轨加速度临界限制1 m/s2,列车脱轨概率极小;(3)通过简化的风险标准导出脱轨概率公式计算表明,该桥遭受到船舶撞击时,其列车的脱轨概率为9×10-5~1.5×10-4;(4)本文的研究结果可供航道上铁路桥梁因船舶撞击导致列车通行安全性研究参考。  相似文献   

12.
为分析桥上有砟轨道结构在重载列车作用下的竖向动力响应,基于ANSYS建立有砟轨道—桥梁系统动力分析有限元模型,将列车荷载简化为集中力,分析研究中—活载及和谐号双机重载列车移动活载作用下桥梁和轨道结构的竖向位移和加速度动力响应。研究结果表明:轨道和桥梁结构跨中竖向位移和加速度响应在HXD1+HXD3+C80作用下最大,最大值为12.60 mm和3.27 mm/s~2,挠跨比为3.94×10~(-4),均小于规范中40 mm,350 mm/s~2和2.5×10~(-3)的要求;行车速度对轨道桥梁结构竖向位移响应影响很小,竖向加速度随着行车速度的增大而增大;增大桥梁刚度可以降低轨道桥梁结构系统的竖向位移和加速度响应,提高行车稳定性和乘客的舒适度;对既有铁路有砟轨道桥梁,应限定行车速度,采取相应的加固措施提高刚度以保证车—轨—桥系统的安全。  相似文献   

13.
惠汝海  陈斌 《铁道建筑》2020,(2):14-17,39
针对现有规范对铁路桥梁的振动加速度限值不适用于大跨度高速铁路桥梁的情况,本文通过分析南京大胜关长江大桥桥梁结构健康监测系统长期监测得到的桥梁结构响应数据,研究列车过桥工况下主梁振动加速度峰值的变化规律,并与车速、轴重进行相关性分析。研究结果表明:在单一列车过桥工况下,主梁加速度峰值集中在固定的变化区间,且服从正态分布;桥梁振动加速度峰值与车速不存在线性相关性,与列车轴重存在线性相关性;动应变响应有叠加交汇工况下,加速度峰值约为单一列车过桥工况的1.4倍;现有运营条件下,大胜关桥梁振动加速度响应正常,能保证列车的行车安全。  相似文献   

14.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

15.
南宁轨道交通1号线采用盾构法穿越膨胀岩分布区。考虑不同岩层组合对列车振动荷载与膨胀力共同作用下隧道管片与围岩的动力响应进行数值模拟分析。结果表明:距离管片越远列车振动荷载引起的沉降越小;荷载条件相同时岩土体阻尼比越小受列车振动荷载影响越大,因而产生的沉降越大;不同岩层组合条件下隧底相同位置的位移、速度、加速度和竖向应力时程曲线均在加载初期突变,在施加的列车振动荷载稳定后近似呈简谐波动形式;隧道腰部所受的竖向应力最大,顶部所受的竖向应力最小。  相似文献   

16.
以全封闭声屏障为研究对象,分析CRH_2型动车组、C_(80)型货车轮轨动荷载作用下声屏障的振动响应。建立金属吸声板声屏障、混凝土声屏障与32 m箱梁耦合的有限元动力分析模型,分析列车作用在箱梁上的轮轨力。通过计算得到不同列车速度下声屏障的位移和加速度响应,分析动位移、振动加速度、频谱特性和总振级的变化规律。结果表明:轮轨动荷载作用下声屏障的竖向、横向位移很小,均在2 mm以内;动车组作用下声屏障的振动加速度峰值可达5 m/s~2;金属吸声板声屏障各考察点处的竖、横向振动加速度在各车速下均较混凝土声屏障大;声屏障振动加速度级在频率40~80 Hz出现第一个峰值(较大),在频率400~800 Hz出现次峰值(较小)。  相似文献   

17.
基于某地铁线路以极小净距下穿京张高铁盾构隧道工程,采用人工激振函数模拟列车振动荷载,分析不同工况下的隧道动力响应特性,探讨了高铁隧道结构的振动加速度、振动速度及竖向位移规律。模拟研究结果表明:隧道监测点振动幅值变化不仅与振动强度有关,还与激振源荷载作用位置有关,高铁隧道中心截面前后±15 m范围内的位移响应最大;隧道交叉位置呈现显著的振动放大现象,造成列车动荷载影响下衬砌结构薄弱区;振动响应总体趋势为自仰拱向拱顶逐渐衰减,即仰拱为隧道振动响应的最不利位置;考虑不同工况,高铁隧道结构的最大振动加速度、振动速度和竖向位移分别为110.204 mm/s~2、3.006 mm/s、0.043 4 mm,低于结构安全振动控制标准的限值,满足安全要求。  相似文献   

18.
依托飞凤山隧道工程,采用数值模拟方法研究了列车动荷载作用下硅藻土地层隧道基底微型钢管桩加固前后的动力响应特性,并引用经验公式预测了隧道长期沉降。结果表明:基底加固前后,列车动荷载作用下隧道结构振动加速度响应峰值均依次为仰拱>墙脚>拱顶>拱肩>边墙,动位移响应峰值均依次为仰拱>墙脚>边墙>拱肩>拱顶;采用钢管桩加固后,隧道结构振动加速度和动位移响应程度都得到明显控制,仰拱处的振动加速度响应峰值和动位移响应峰值分别减小了14.46%和30.58%;硅藻土地层隧道车致长期沉降主要发生在运营期前两年,钢管桩加固基底可有效减少隧道长期沉降。  相似文献   

19.
海南西环线既有桥梁动载试验研究   总被引:1,自引:0,他引:1  
就提速改造之前的海南西环线8座桥梁的9孔梁进行了动载试验。采用列车通过桥梁时,梁体跨中动挠度、梁体跨中竖向振动与梁体跨中和桥墩墩顶横向振动、梁体跨中横向振动加速度、支座竖向动位移和横向动位移测试,确定桥梁结构的动力系数、振动特征、裂缝状态,用以评定结构在动载作用下的工作状态确定桥梁的可靠性。通过相关关系分析,揭示桥梁结构动力学特性差异的原因。  相似文献   

20.
以北京—张家口高速铁路清华园隧道为依托,介绍了隧道轨下预制装配式结构,并从抗滑移、列车动力响应和地震响应3个方面对结构稳定性和安全性进行了数值模拟分析。结果表明:在不考虑预制箱涵结构顶部现浇回填层且忽略箱涵与管片间螺栓连接条件下,列车通过时在峰值压力作用下箱涵结构的最大竖向位移为0.035 mm,最大竖向应力为0.42 MPa;时速300 km列车通过时,预制装配式箱涵结构竖向位移、竖向动应力及竖向加速度的最大值分别为0.036 mm,64.2 kPa,0.84 m/s2;地震荷载(汶川地震波)作用下最大水平、竖向位移分别为4.71,4.67 mm,最大水平、竖向应力分别为9.828 MPa,19.555 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号