首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了研究单箱多室波形钢腹板连续箱梁桥的动力特性,参照南昌朝阳大桥非通航孔桥,制作了3跨单箱双室波形钢腹板连续梁桥,并利用Ansys建立其有限元模型分析其动力特性;采用固定参考点移动测点法(UINO)对模型桥进行了动力测试,并将测试结果和有限元计算结果进行对比;采用有限元方法研究了横隔板对单箱多室波形钢腹板连续梁模型桥动力特性的影响,并与普通混凝土腹板箱梁对比。分析结果表明:有限元结果与模型桥实测低阶频率误差较小,波形钢腹板连续梁桥扭转刚度和横向振动刚度相对较低,端横隔板对其动力特性的改善效果明显。  相似文献   

2.
为了解单箱多室波形钢腹板组合箱梁斜拉桥在施工过程中的剪应力分布情况,以某单箱五室波形钢腹板PC组合箱梁斜拉桥为背景,采用MIDAS Civil软件建立全桥空间有限元模型和边塔主梁施工过程精细模型,并结合实桥施工监测数据,研究单箱多室波形钢腹板组合箱梁在不同施工阶段的抗剪特性。结果表明:波形钢腹板组合箱梁的挠度实测值与精细模型计算值基本吻合;斜拉索张拉时,组合箱梁的剪切变形会显著增大组合箱梁的挠度;单箱多室波形钢腹板PC组合箱梁的腹板剪应力沿高度方向变化较小,呈等值分布;各腹板的剪应力分布与施工工况有关,在斜拉索张拉阶段剪应力主要由中腹板承担,但后续节段施工会改善腹板间的剪应力不均匀现象。  相似文献   

3.
由于单箱多室波形钢腹板PC组合箱梁截面剪力滞效应与混凝土箱梁截面剪力滞效应相比有很大差异,并且波形钢腹板几乎承担了全部剪力,波形钢腹板的剪切模量也需要进行修正。为研究单箱多室波形钢腹板PC组合箱梁的剪力滞效应,从波形钢腹板PC组合箱梁的受力特点出发,以满足剪力滞翘曲应力的轴向平衡条件,采用二次、三次抛物线定义了单箱双室、单箱三室波形钢腹板PC组合箱梁的纵向位移差函数,利用势能驻值原理的能量变分法建立了波形钢腹板PC组合箱梁考虑剪力滞、剪切变形效应的控制微分方程组,并推导出简支梁、悬臂梁、连续梁在集中荷载、均布荷载作用下的解析解。通过解析法和有限元法分别计算了简支梁和悬臂梁的剪力滞效应,并研究了集中荷载和满跨均布荷载作用下的单箱多室波形钢腹板PC组合箱梁的剪力滞分布规律,结果表明:采用二次抛物线剪力滞翘曲位移函数推导的剪力滞系数更为合理;单箱多室波形钢腹板PC组合箱梁在跨中集中荷载下,波形钢腹板与混凝土顶、底板交界处的剪力滞效应较为突出;随着波形钢腹板PC箱梁室数的增加,剪力滞系数明显减少,且解析解与有限元数值解一致,表明了解析解的正确性,并通过分析给出了相应的剪力滞系数,可以为单箱多室波形钢腹板箱梁的设计计算提供参考依据。  相似文献   

4.
基于南昌市朝阳大桥非通航孔段K26~K29的波形钢腹板PC箱梁桥,采用ansys软件建立三跨连续单箱双室波形钢腹板箱梁静力模型,通过比较模型桥试验、有限元方法和理论公式的分析结果,研究了偏载系数随着加载位置和加载力大小的变化规律。结果表明:加载截面附近内衬混凝土、横隔板、预应力钢束的存在,一定程度上加强了截面的刚度,致使截面挠度有所降低;经验系数法和经修正后的偏压系数法都不适用于单箱多室波纹钢腹板pc组合箱梁桥的偏载系数计算分析;对于该类单箱多室波纹钢腹板pc组合箱梁桥,有限元法得出的偏载系数与实测值较吻合,可作为以后工程设计参考。  相似文献   

5.
与传统的混凝土腹板的箱梁相比,波形钢腹板箱梁具有特殊受力特性,钢腹板主要承受剪应力。对于单箱多室桥面较宽的波形钢腹板箱梁来说,各钢腹板的竖向剪应力分布比较复杂。通过空间有限元分析,发现不同横隔板的位置对钢腹板的竖向剪应力影响较大。应用有限元分析软件ANSYS建立单箱多室波形钢腹板箱梁参数化分析模型,计算得到最佳横隔板设计位置,并给出在单向车道荷载偏载作用下沿桥梁横向各钢腹板剪应力分布情况,为波形钢腹板箱梁的合理设计提供参考。  相似文献   

6.
为客观准确地对单箱多室波形钢腹板PC组合箱梁的剪力滞效应进行评价,结合单箱多室混凝土箱梁的计算特点,定义了波形钢腹板箱梁的剪滞翘曲位移函数,通过能量变分法建立了单箱双室和单箱三室波形钢腹板箱梁考虑剪力滞效应的基本微分方程。分别采用有限元方法和解析方法分析计算了范例的剪力滞效应,研究了跨中集中荷载和满跨均布载荷作用下截面的剪力滞分布规律,探讨了跨宽比对剪力滞效应的影响。研究表明,该解析解与有限元数值解吻合较好,但在箱梁顶底板与波形钢腹板接合处、外伸悬臂板边缘处有一些差异,需要进行修正。研究给出了相关的剪力滞系数,可以为波形钢腹板箱梁设计时的剪力滞系数取值提供参考。  相似文献   

7.
为优化波形钢腹板内衬混凝土组合结构受力,以南昌朝阳大桥通航孔桥——单箱多室波形钢腹板单索面多塔斜拉桥为工程背景,通过理论计算和有限元分析研究了单箱多室波形钢腹板组合箱梁内衬混凝土布置形式对结构抗剪性能的影响。结果表明:有无设置内衬混凝土对单箱多室波形钢腹板组合箱梁腹板剪应力水平较高的波形钢腹板影响较大,对腹板剪应力水平较低的波形钢腹板影响较小;内衬混凝土单侧设置和双侧设置波形钢腹板剪应力的影响相差不大;内衬混凝土双侧设置及仅有内衬混凝土无波形钢腹板设置对混凝土剪应力的影响相差较小;对单箱多室波形钢腹板组合箱梁高剪应力水平腹板内衬混凝土可以考虑双侧布置或仅设置混凝土腹板,不设置波形钢腹板;而剪应力水平较低的腹板则考虑设置单侧内衬混凝土。  相似文献   

8.
为了得到单箱多室波形钢腹板简支箱梁偏载系数的简化计算方法,用刚性横梁法推导了单箱多室波形钢腹板箱梁荷载横向分布系数的计算公式,通过有限元建模计算单箱多室波形钢腹板箱梁的偏载系数,并对影响偏载系数的因素进行参数敏感性分析。基于偏载系数与荷载横向分布的关系,提出偏载系数的简化计算公式,利用该公式对某工程实例进行了偏载系数计算。结果表明,影响正应力偏载系数及剪应力偏载系数的最主要因素是宽跨比,提出的偏载系数简化计算公式适用于不超过5室,单室宽度与跨径比介于0.08~0.24的单箱多室波形钢直腹板箱梁正应力偏载系数及剪应力偏载系数的求解。  相似文献   

9.
为了解单箱三室波形钢腹板组合梁悬臂施工状态下的扭转效应,设计制作了1片单箱三室波形钢腹板双悬臂梁模型,研究了该类悬臂梁在偏载作用下梁体变形、截面翘曲应力、翘曲应变及波形钢腹板附加剪应力等力学性能,并以国内某单箱三室波形钢组合梁桥为背景,采用有限元模型分析了不同工况下最大悬臂施工阶段单箱三室波形钢腹板截面的力学性能。结果表明:偏载作用下,波形钢腹板上纵向翘曲应变明显小于混凝土顶底板,计算时可忽略波形钢腹板纵向翘曲应力的影响;截面最大翘曲正应力出现在混凝土底板角点处,钢腹板附加剪应力沿梁高方向呈均匀分布,且加载侧边腹板附加应力值明显大于中腹板;实际工程中,考虑恒载作用时,截面底板翘曲应力约占弯曲应力的20%,故在进行该类桥设计计算时,不可忽略混凝土板翘曲正应力和波形钢腹板附加剪应力的影响。  相似文献   

10.
以朝阳沟水库特大桥为研究对象,采用三维有限元软件建立全桥空间力学模型,分别计算多箱室波形钢腹板箱梁、传统砼腹板箱梁的自振频率和振型,通过对比两种截面形式的动力特性研究多箱室波形钢腹板箱梁的受力性能,结果表明,将砼腹板换成波形钢腹板后,箱梁刚度和受弯性能得到改善,同时通过合理设置横隔梁,其抗扭性能得到提高;分别构建多箱室波形钢腹板箱梁部分斜拉桥、连续刚构桥和传统斜拉桥空间力学模型,对比分析不同结构形式多箱室波形钢腹板箱梁的自振频率和振型,分析3种桥型的动力特性和刚度,结果显示,波形钢腹板部分斜拉桥的动力性能、主梁刚度优越。  相似文献   

11.
为研究结构参数对单箱多室波形钢腹板组合箱梁桥动力特性的影响,以南昌市朝阳大桥非通航孔桥为工程背景,利用有限元分析软件ANSYS建立该桥的空间有限元模型,分析横隔板和横隔梁布置、钢腹板板厚、钢腹板与横隔梁连接方式、支座约束及箱梁截面形式对该桥频率及振型的影响。结果表明:端横隔板对结构基频影响较大,中横隔梁主要影响桥面板局部振动;结构各阶频率随着腹板厚度增加略微增加;腹板与横隔梁的不同连接方式对各阶频率与振型影响不大;双固定支座可以限制结构横向弯曲,延缓桥面板局部振动出现;合理选择箱梁翼缘板宽度和箱室宽度可以有效限制结构扭转变形。  相似文献   

12.
奉化江大桥主桥是跨径布置为100+160+100m大跨度连续预应力波形钢腹板组合梁桥,为单幅主梁采用单箱三室的波形钢腹板组合箱梁截面。采用Midas Civil 2012软件对其进行空间结构有限元法计算模型,对桥梁进行动力特性分析和响应分析计算,得到相应计算结论,为以后类似桥梁动力特性和及响应分析计算提供依据。  相似文献   

13.
为寻求大跨波形钢腹板箱梁桥在保证横向刚度前提下的合理结构参数,对其不同结构参数下的动力特性进行研究。以紫金大桥[(88+156+88)m波形钢腹板组合连续梁桥]为背景,采用ANSYS软件建立全桥有限元模型,研究该桥的动力特性,并分析箱梁截面形式、横隔板布置方式和横向约束方式对其动力特性的影响。结果表明:大跨度波形钢腹板箱梁桥的横向抗弯刚度和抗扭刚度均较低;其他参数相同时,箱室数量对大跨度波形钢腹板箱梁桥的动力特性影响很小;中横隔板对大跨度波形钢腹板箱梁桥的动力特性影响较小,端横隔板能够有效地提高其横向抗弯刚度和抗扭刚度;横向约束方式对大跨度波形钢腹板组合箱梁桥的横向抗弯刚度有显著影响,端部支座的约束效果比中间支座更明显。  相似文献   

14.
以南昌朝阳大桥非通航孔波形钢腹板组合梁桥为试验原型,根据模型试验的特点和目的,设计并研制了三跨单箱双室波形钢腹板模型试验桥;选择了合适的模型材料,设计了微混凝土配合比,根据弹性相似律确定了相似比并进行了配重处理,对波形钢腹板及抗剪连接件进行了设计;对模型桥进行了静力及动力校核,对比分析了模型桥及实桥的动力特性,满足相应的相似要求。设计研制的模型具有可行性,可用于研究实际工程中多跨波形钢腹板连续梁桥的静动力特性。  相似文献   

15.
对某单箱三室波形钢腹板箱梁进行试验研究,得到各工况下测试截面测点的正应力,与有限元结果进行对比分析,测试数据与试验值接近,采用有限元分析结果研究单箱三室波形钢腹板箱梁剪力滞效应.研究结果表明:单箱三室波形钢腹板箱梁边腹板剪力滞系数大于中腹板.与边腹板相连的边室上翼缘有效宽度计算系数小于与中腹板相连的边室上翼缘有效宽度计算系数.与中腹板相连的边室上翼缘有效宽度计算系数大于中室.现有的国内外桥梁规范,均未考虑多室箱梁翼板剪切变形差异造成的有效宽度计算系数的变化,无法准确给出其有效宽度计算系数.  相似文献   

16.
为了分析计算波形钢腹板箱梁在竖向荷载作用下的弯曲挠度,考虑波形钢腹板和混凝土顶、底板在其自身平面内的全截面剪切变形,引入符合力学规律的波形钢腹板和混凝土顶、底板在其面内剪切变形的位移函数,利用能量变分原理,推导出波形钢腹板箱梁挠度计算的解析解。结合单箱单室和单箱双室波形钢腹板箱梁算例,与仅考虑波形钢腹板剪切变形的挠度计算方法和ANSYS有限元解进行了比较分析。结果表明:该解析解的计算结果比仅考虑波形钢腹板剪切变形的计算结果更加精确,与有限元分析结果吻合良好,误差在5%以内,满足挠度计算的精度需求,且跨径越小,全截面剪切变形效应对挠度的影响越明显;针对单箱单室波形钢腹板箱梁,全截面剪切变形效应对挠度的贡献最大为36. 12%,其中波形钢腹板的剪切变形对总挠度的贡献最大为34. 46%,剪力滞效应对总挠度的贡献最大为1. 66%;而对于单箱双室波形钢腹板箱梁,全截面剪切变形效应对挠度的贡献最大为40. 91%,其中波形钢腹板的剪切变形对总挠度的贡献最大为36. 03%,剪力滞效应对总挠度的贡献最大为4. 88%;在相同的工况下,波形钢腹板箱梁的箱室越多,全截面剪切变形效应对挠度的贡献越大,挠度贡献值的最大增幅为4. 79%,在不同的工况下,集中荷载作用下全截面的剪切变形效应较为明显。  相似文献   

17.
为研究单箱五室波形钢腹板部分斜拉桥腹板的抗剪性能,以即将竣工验收的运宝黄河大桥为工程背景,利用Midas FEA软件建立该桥固结区域局部有限元模型,计算腹板的剪力分配与箱梁截面的剪力滞效应,考查混凝土内衬对波形钢腹板剪应力的影响。结果表明:同一截面中外侧钢腹板承担剪力的比重高于内侧,而混凝土腹板剪力分配比重明显高于钢腹板;随着远离墩梁固结区域,同一截面内混凝土腹板处的顶板正应力减小,钢腹板处的顶板正应力增大,底板的正应力均有所减小;混凝土内衬有效地降低了钢腹板剪应力,提高了钢腹板的抗屈曲性能。  相似文献   

18.
波形钢腹板组合箱梁桥与钢筋混凝土箱梁桥一样,箱梁翼板也存在剪力滞效应.为研究大跨度变截面波形钢腹板组合连续箱梁的剪力滞效应,采用ANSYS的APDL参数化建模方法建立了典型的三跨式波形钢腹板组合连续箱梁桥的有限元模型,计算分析了集中(均布)荷载作用下变截面箱梁几何参数(腹板尺寸、宽高比、宽跨比、变截面)对于剪力滞系数的...  相似文献   

19.
工程项目设计中,单箱多室宽箱梁横向桥面宽度往往大于跨度,受力情况复杂,采用常规梁单元计算分析,无法有效精确模拟横桥向箱梁受力状态.其中横桥向不同腹板的剪力分配情况,为多腹板宽箱梁横向受力的重点.为研究单箱多室宽箱梁不同腹板剪力分配的差异,建立箱梁上部实体单元有限元模型及相关对比模型.经分析可知,支座布设情况对宽箱梁多腹板剪力分配,起到至关重要的作用.  相似文献   

20.
为了解小半径曲线刚构-连续单箱双室箱梁桥弯扭耦合作用效应,指导主梁合理构造设计,以莫桑比克某跨海大桥北引桥(小半径多跨曲线刚构-连续单箱双室箱梁桥)为研究对象,采用MIDAS Civil软件建立该桥整体模型,采用ANSYS软件建立局部实体模型,计算不同顶板厚度箱梁的扭转受力性能,分析弯扭作用下箱梁断面各部位剪力分布规律。结果表明:箱梁约束扭转产生的翘曲正应力相对弯曲正应力较小,设计时可忽略不计;顶板整体加厚可降低顶板扭转剪应力和翘曲正应力,可分别降低24%、33%;扭矩对两侧边腹板剪力存在差异影响,对内侧边腹板影响较大,不利影响达40%,弯桥设计时腹板厚度应按受力最不利的内侧腹板控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号