首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper draws together empirical evidence from a variety of sources about the magnitudes of transit price elasticities and cross-elasticities. A number of different practical measures of demand elasticity are first defined and some expectations about magnitude are discussed. Evidence is then collated from the analysis of transit operating statistics, from experience in demonstration projects and from attempts to develop cross-sectional models of demand and modal choice.In general, all of the limited evidence available suggests that transit demand is inelastic with respect to money price. Typically, ridership is significantly more sensitive to changes in the level of service (particularly door-to-door journey time) than to changes in fare, although service elasticities also are usually numerically less than unity.In broad terms, short-run direct fare elasticities are characteristically observed to lie within the range of -0.1 to –0.7. A more precise value in a particular instance will depend on a variety of factors in ways which largely support a priori notions. Thus in very large cities, central city areas, at peak hours, and in other circumstances where the prices of alternative modes are high, transit fare elasticities are usually numerically at the lower end of the range.Estimates of cross-elasticities (representing the volumes of transit traffic diverted to other modes by transit price increases) are much harder to come by, and in fact only a few very uncertain estimates are presented here.This paper is a condensation of an Urban Institute Working Paper of the same title (WP 708-52, November 1971). Opinions expressed are those of the author and do not necessarily represent the views of The Urban Institute or its sponsors.  相似文献   

2.
Transit fares are an effective tool for demand management. Transit agencies can raise revenue or relieve overcrowding via fare increases, but they are always confronted with the possibility of heavy ridership losses. Therefore, the outcome of fare changes should be evaluated before implementation. In this work, a methodology was formulated based on elasticity and exhaustive transit card data, and a network approach was proposed to assess the influence of distance-based fare increases on ridership and revenue. The approach was applied to a fare change plan for Beijing Metro. The price elasticities of demand for Beijing Metro at various fare levels and trip distances were tabulated from a stated preference survey. Trip data recorded by an automatic fare collection system was used alongside the topology of the Beijing Metro system to calculate the shortest path lengths between all station pairs, the origin–destination matrix, and trip lengths. Finally, three fare increase alternatives (high, medium, and low) were evaluated in terms of their impact on ridership and revenue. The results demonstrated that smart card data have great potential with regard to fare change evaluation. According to smart card data for a large transit network, the statistical frequency of trip lengths is more highly concentrated than that of the shortest path length. Moreover, the majority of the total trips have a length of around 15 km, and these are the most sensitive to fare increases. Specific attention should be paid to this characteristic when developing fare change plans to manage demand or raise revenue.  相似文献   

3.
This paper presents eight empirical models of monthly ridership for seven U.S. Transit Authorities. Within the framework of these models, the impacts upon monthly ridership from changes in the real fare and gasoline prices are examined. Important findings are: (1) the elasticities of monthly transit ridership with respect to the real fare are negative and inelastic, ranging from 0.042 to 0.62; and (2) the elasticities of monthly transit ridership with respect to the real gasoline price are positive and inelastic, ranging from 0.08 to 0.80. Such results have important policy implications for decisions based on the relationships of price, revenue, and ridership; and for assessing the impacts of changing gasoline prices upon urban modal choice.  相似文献   

4.
This paper investigates the effects of price and service changes on transit ridership. The concept of elasticity is introduced and the traditional methods for estimating elasticities are discussed. In this paper an extra dimension is added by investigating short and long term elasticities. Time series analysis, developed by Box and Jenkins is chosen for the analysis. The Box and Jenkins methodology is applied to a monthly time series of average weekday ridership on the Chicago Transit Authority (CTA) rail system. Four categories of explanatory variables are investigated: fare on the CTA rail system, service provided on the CTA rail system, cost of car trips and weather effects. The effects of gas prices and rail service were found to be significant; however the results indicate a twelve month delay before service changes influence ridership. The effect of transit fares was found to be insignificant, indicating that both the short and long term fare elasticities are zero.  相似文献   

5.
This study investigates the asymmetric effects of gasoline prices on public transportation use in Taiwan. The empirical results obtained are as follows. First, we verify that gasoline price is an important determinant of transit demand. Gasoline prices have significantly positive effects on bus and mass rapid transit (MRT) use. Second, MRT ridership is more sensitive than bus and railway ridership to gasoline price and income. In the face of oil prices escalation and economic growth, the MRT system should have higher priority in public transportation planning. Third, the effects of gasoline prices on bus and MRT use are asymmetric. Bus and MRT use increases faster when gasoline prices rise than it decreases when gasoline prices fall. The transit agencies should adjust operating strategies faster in the rising of oil prices than in the falling of oil prices. It is important for transit planning to use oil prices as signals and increase the flexibility of operation in dealing with the changes in ridership. Some strategies, such as enhancing the availability of transfer information and updating transit information timely, are helpful to move passengers efficiently.  相似文献   

6.
A microcomputer based system for designing and evaluating distance-based and zone fares for transit properties is described. At the heart of the system is an optimization model that finds the fixed charge, mileage charge, and transfer charge that maximize gross revenue subject to constraints on ridership and the form of the fare equation. A linear approximation to the demand curve at the base case values results in a quadratic programming problem. Three alternative modes of using the model system are demonstrated using selected data from the Chicago Transit Authority. Model extensions and proposed future work are outlined.  相似文献   

7.
This paper summarizes and updates the findings from an earlier study by the same authors of transit systems in Houston (all bus) and San Diego (bus and light rail). Both systems achieved unusually large increases in transit ridership during a period in which most transit systems in other metropolitan areas were experiencing large losses. Based on ridership models estimated using cross section and time series data, the paper quantifies the relative contributions of policy variables and factors beyond the control of transit operators on ridership growth. It is found that large ridership increases in both areas are caused principally by large service increases and fare reductions, as well as metropolitan employment and population growth. In addition, the paper provides careful estimates of total and operating costs per passenger boarding and per passenger mile for Houston's bus operator and San Diego's bus and light rail operators. These estimates suggest that the bus systems are more cost-effective than the light rail system on the basis of total costs. Finally, the paper carries out a series of policy simulations to analyze the effects of transit funding levels and metropolitan development patterns on transit ridership and farebox recovery ratio.  相似文献   

8.
Several decades of research on transit pricing have provided clear insights into how riders respond to price changes in both the transit and automobile sectors. For the most part, riders are insensitive to changes in either fare levels, structures, or forms of payments, though this varies considerably among user groups and operating environments. Since riders are approximately twice as sensitive to changes in travel time as they are to changes in fares, a compelling argument can be made for operating more premium quality transit services at higher prices. Such programs could be supplemented by vouchers and concessionary programs to reduce the burden of higher fares on low-income users. Also, cross-elasticity research suggests that higher automobile prices would have a significantly greater affect on ridership than lower fares. Most research on transit fare structures shows that the common practice of flat fares is highly inequitable, penalizing short-distance and off-peak users. Free fare programs have proven quite costly for each new transit user attracted and have rarely lured motorists to transit. Free fares limited to downtowns have been more successful than systemwide free fare programs. While prepayment schemes have met with success in the U.S. and Europe, honor fares have suffered from excessive revenue losses in at least one case in the U.S. Some of the more noteworthy fare policy successes in North America have been Bridgeport's combined pass-fare program, Allentown's deep discounts, Ottawa's major fare reduction and differentiation, and Columbus's substantial midday discount. As paratransit and other new transit alternatives to conventional bus continue to emerge, new, more differentiated fare practices can be expected in the future.  相似文献   

9.
Abstract

Providing efficient public transportation has been recognized as a potential way of alleviating congestion, improving mobility, mitigating air pollution, and reducing energy consumption. Many people use public transportation systems for their daily commute, while others use different transportation modes (e.g. cars, taxis, carpools, etc.). Inexpensive fares with good transit service encourages ridership, and the resulting revenue may be used to provide better service. Optimization of transit service frequency and its associated fare structure is desirable in order to increase revenue at reasonable transit operating expenditure. The objective of the study reported here is to maximize profit subject to service capacity constraint, while elastic demand is considered. The solution methodology is developed and applied to solve the profit maximization problem in a case study based on Newark, NJ, USA. Numerical results, including optimal solutions and sensitivity analyses, are presented. It is found that an optimal temporal headway and differential fare structure that maximizes total profit for the studied subway system can be efficiently solved.  相似文献   

10.
This paper presents two time series regression models, one in linear form and the other in logarithmic form, to estimate the monthly ridership of a single urban rail rapid transit line. The model was calibrated for a time period of about six and a half years (from 1978–1984) based on ridership data provided by a transit authority, gasoline prices provided by a state energy department, and other data.The major findings from these models are: (1) seasonal variations of ridership are –6.26%, or –6.20% for the summer period, and 4.77%, or 4.62% for the October period; (2) ridership loss due to a station closure is 2.46% or 2.41%; and (3) elasticities of monthly ridership are –0.233 or –0.245 with respect to real fare, 0.113 or 0.112 with respect to real gasoline price, and 0.167 or 0.185 with respect to real bridge tolls for the competing automobile trips. Such route specific application results of this inexpensive approach provide significant implications for policymaking of individual programs in pricing, train operation, budgeting, system changes, etc., as they are in the case reported herein and would be in many other cities.  相似文献   

11.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

12.
In this paper we present a route-level patronage model that incorporates transit demand, supply and inter-route effects in a simultaneous system. The model is estimated at the route-segment level by time of day and direction. The results show strong simultaneity among transit demand, supply and competing routes. Transit ridership is affected by the level of service, which in turn is determined by current demand and ridership in the previous year. The model demonstrates that a service improvement has a twofold impact on ridership; it increases ridership on the route with service changes, but it also reduces the ridership on competing routes so that the net ridership change is small. The model is thus useful for both system-level analysis and route-level service planning.  相似文献   

13.
Fare and service frequency significantly affect transit users’ willingness to ride, as well as the supplier's revenue and operating costs. To stimulate demand and increase productivity, it is desirable to reduce the transfer time from one route to another via efficient service coordination, such as timed transfer. Since demand varies both temporally and spatially, it may not be cost-effective to synchronize vehicle arrivals on all connecting routes at a terminal. In this paper, we develop a schedule coordination model to optimize fare and headway considering demand elasticity. The headway of each route is treated as an integer-multiple of a base common headway. A discounted (reduced) fare is applied as an incentive to encourage ridership and, thus, stimulate public transit usage. The objective of the proposed coordination model is used to maximize the total profit subject to the service constraint. A numerical example is given to demonstrate the applicability of the proposed model. The results show that the optimized fare and headway may be carefully applied to yield the maximum profit. The relationship between the decision variables and model parameters is explored in the sensitivity analysis.  相似文献   

14.
This paper presents a normative model for transit fare policy-making. Key elements of the model are: establishing service policy and ridership objectives, developing an overall financial philosophy, making fare level decisions, making structural pricing decisions, and designing implementation strategies. In general, the overall objectives of a transit agency regarding service quality and ridership levels should be the main impetus behind any fare program. Identifying where transit lies on the continuum of being a public versus a private service should frame the overall financial philosophy of a transit agency. From this the specification of farebox recovery targets should follow. Deciding upon structural aspects of a fare program perhaps represents one of the most important and most frequently overlooked steps of the process. Specific cost-based and value-based fare strategies should be considered. Implementation involves making the adopted fare strategy work. Key implementation issues are: fare payment and collection techniques, necessary service changes, marketing and promotional programs, and consensus-building. The model presented calls for feedback among these steps to allow an iterative, yet comprehensive, approach to fare policy-setting.  相似文献   

15.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
An integrated approach is suggested for the planning and evaluation of mass transport systems which includes a bus network and LRT/RTS in urban areas. This approach involves a simplified procedure for determining mass transit demand, bus route network generation and evaluation, light or rapid transit corridor identification and its patronage determination in the presence of bus networks. Scheduling of a mass transportation system based on marginal ridership concept is also suggested for a given fleet size. All the three major components (demand estimation, route network generation and scheduling) iterate and interact each other with a feedback mechanism for the desired optimal solution in terms of performance indicators. Necessary interactive software packages for all the above subsystems have been developed.  相似文献   

17.
The recent volatility in gasoline prices and the economic downturn have made the management of public transportation systems particularly challenging. Accurate forecasts of ridership are necessary for the planning and operation of transit services. In this paper, monthly ridership of the Metropolitan Tulsa Transit Authority is analyzed to identify the relevant factors that influence transit use. Alternative forecasting models are also developed and evaluated based on these factors—using regression analysis (with autoregressive error correction), neural networks, and ARIMA models—to predict transit ridership. It is found that a simple combination of these forecasting methodologies yields greater forecast accuracy than the individual models separately. Finally, a scenario analysis is conducted to assess the impact of transit policies on long-term ridership.  相似文献   

18.
ABSTRACT

Fare evasion is a significant concern for most transit authorities. The traditional approach to fare compliance has focussed on modifying the physical control of ticketing or ticket inspection rates. Yet recently the perspective on fare evasion has begun to shift toward profiling the fare evader or understanding the customer motivations to fare evade. This paper uses a literature review method to document the characteristics of these three perspectives on fare evasion: the conventional transit system perspective, the customer profiling perspective and the customer motivations perspective. We find that the conventional transit system perspective, although straightforward to measure and control, has its limits particularly in “open” transit systems. The customer profiling perspective attempts to identify, based on demographics, which customers are more likely to fare evade. However this perspective has little use beyond profiling and is ethically questionable. The customer motivations perspective provides a richer understanding of how customers define fare evasion and what attitudes, social norms and circumstances motivates them to fare evade. Considering that between 20% and 40% of a city’s residents admit to fare evading at some point, understanding these complex motivations can help improve revenue compliance at a time when most governments heavily subsidise their transit systems.  相似文献   

19.
Public subsidy of transit services has increased dramatically in recent years, with little effect on overall ridership. Quite obviously, a clear understanding of the factors influencing transit ridership is central to decisions on investments in and the pricing and deployment of transit services. Yet the literature about the causes of transit use is quite spotty; most previous aggregate analyses of transit ridership have examined just one or a few systems, have not included many of the external, control variables thought to influence transit use, and have not addressed the simultaneous relationship between transit service supply and consumption. This study addresses each of these shortcomings by (1) conducting a cross-sectional analysis of transit use in 265 US urbanized areas, (2) testing dozens of variables measuring regional geography, metropolitan economy, population characteristics, auto/highway system characteristics, and transit system characteristics, and (3) constructing two-stage simultaneous equation regression models to account for simultaneity between transit service supply and consumption. We find that most of the variation in transit ridership among urbanized areas – in both absolute and relative terms – can be explained by factors outside of the control of public transit systems: (1) regional geography (specifically, area of urbanization, population, population density, and regional location in the US), (2) metropolitan economy (specifically, personal/household income), (3) population characteristics (specifically, the percent college students, recent immigrants, and Democratic voters in the population), and (4) auto/highway system characteristics (specifically, the percent carless households and non-transit/non-SOV trips, including commuting via carpools, walking, biking, etc.). While these external factors clearly go a long way toward determining the overall level of transit use in an urbanized area, we find that transit policies do make a significant difference. The observed range in both fares and service frequency in our sample could account for at least a doubling (or halving) of transit use in a given urbanized area. Controlling for the fact that public transit use is strongly correlated with urbanized area size, about 26% of the observed variance in per capita transit patronage across US urbanized areas is explained in the models presented here by service frequency and fare levels. The observed influence of these two factors is consistent with both the literature and intuition: frequent service draws passengers, and high fares drive them away.  相似文献   

20.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号