首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Transit systems are subject to congestion that influences system performance and level of service. The evaluation of measures to relieve congestion requires models that can capture their network effects and passengers' adaptation. In particular, on‐board congestion leads to an increase of crowding discomfort and denied boarding and a decrease in service reliability. This study performs a systematic comparison of alternative approaches to modelling on‐board congestion in transit networks. In particular, the congestion‐related functionalities of a schedule‐based model and an agent‐based transit assignment model are investigated, by comparing VISUM and BusMezzo, respectively. The theoretical background, modelling principles and implementation details of the alternative models are examined and demonstrated by testing various operational scenarios for an example network. The results suggest that differences in modelling passenger arrival process, choice‐set generation and route choice model yield systematically different passenger loads. The schedule‐based model is insensitive to a uniform increase in demand or decrease in capacity when caused by either vehicle capacity or service frequency reduction. In contrast, nominal travel times increase in the agent‐based model as demand increases or capacity decreases. The marginal increase in travel time increases as the network becomes more saturated. Whilst none of the existing models capture the full range of congestion effects and related behavioural responses, existing models can support different planning decisions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper models part of a public transport network (PTN), specifically, a bus route, as a small-size multi-agent system (MAS). The proposed approach is applied to a case study considering a ‘real world’ bus line within the PTN in Auckland, New Zealand. The MAS-based analysis uses modeling and simulation to examine the characteristics of the observed system – autonomous agents interacting with one another – under different scenarios, considering bus capacity and frequency of service for existing and projected public transport (PT) demand. A simulation model of a bus route is developed, calibrated and validated. Several results are attained, such as when the PT passenger load is not close to bus capacity, this load has no effect on average passenger waiting time at bus stops. The model proposed can be useful to practitioners as a tool to model the interaction between buses and other agents.  相似文献   

4.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

5.
为准确把握轨道交通网络化运营的新态势和新要求,力求轨道交通系统在大客流下做到运输能力和服务水平的供需匹配,需对轨道交通网络的关键瓶颈进行有效识别和疏解。本文借鉴交通渗流理论,提出了限制网络整体服务水平和连通效能的动态服务瓶颈的识别方法,该方法综合考虑了城市轨道交通系统的网络特性、客流特性和服务特性。其中针对区间服务水平状态,该方法提出了定量评定的复合指标模型。以成都地铁线网为案例,基于实际客流运营数据,构建动态网络,识别服务瓶颈,验证了方法的适用性和准确性,对城市轨道交通系统运营管理有实际指导意义。  相似文献   

6.
We present an integrated activity-based discrete choice model system of an individual’s activity and travel schedule, for forecasting urban passenger travel demand. A prototype demonstrates the system concept using a 1991 Boston travel survey and transportation system level of service data. The model system represents a person’s choice of activities and associated travel as an activity pattern overarching a set of tours. A tour is defined as the travel from home to one or more activity locations and back home again. The activity pattern consists of important decisions that provide overall structure for the day’s activities and travel. In the prototype the activity pattern includes (a) the primary – most important – activity of the day, with one alternative being to remain at home for all the day’s activities; (b) the type of tour for the primary activity, including the number, purpose and sequence of activity stops; and (c) the number and purpose of secondary – additional – tours. Tour models include the choice of time of day, destination and mode of travel, and are conditioned by the choice of activity pattern. The choice of activity pattern is influenced by the expected maximum utility derived from the available tour alternatives.  相似文献   

7.
In this paper robust models are presented for the transportation service network design problem, using the ferry service network design problem as an example application. The base assumption is that only the mean and an upper bound on the passenger demand are known. In one robust model, this information is supplemented by a lower bound on the demand, whereas in a second robust model, the assumption is made that the variance of the demand is known, in addition to the mean and upper bound. The relationship between the two models is investigated and characterized analytically. A case study using the ferry service in Hong Kong is provided to illustrate the models.  相似文献   

8.
Freight transport demand is a demand derived from all the activities needed to move goods between locations of production to locations of consumption, including trade, logistics and transportation. A good representation of logistics in freight transport demand models allows us to predict the effects of changes in logistics systems on future transport flows. As such it provides better estimations of the costs of interaction and allows to predict changes in spatial patterns of freight transport flows more accurately. In recent years, the attention for freight modelling has been growing and new research work has appeared aimed at incorporating logistics in freight models. In this paper we review the state of the art in the representation of logistics considerations in freight transport demand models. Our focus is on the service and cost drivers of changes in logistics networks and how these affect freight transport. Our review proceeds along a conceptual framework for modelling that goes beyond the conventional 4-step modelling approach. We identify promising areas for freight modelling that have an integrative function within this framework, such as spatial computable general equilibrium models, supply chain choice models and hypernetwork models.  相似文献   

9.
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

10.
This paper proposes an Interactive Multiple Model-based Pattern Hybrid (IMMPH) approach to predict short-term passenger demand. The approach maximizes the effective information content by assembling the knowledge from pattern models using historical data and optimizing the interaction between them using real-time observations. It can dynamically estimate the priori pattern models combination in advance for the next time interval. The source demand data were collected by Smart Card system along one bus service route over one year. After correlation analysis, three temporal relevant pattern time series are generated, namely, the weekly, daily and hourly pattern time series. Then statistical pattern models are developed to capture different time series patterns. Finally, an amended IMM algorithm is applied to dynamically combine the pattern models estimations to output the final demand prediction. The proposed IMMPH model is validated by comparing with statistical methods and an artificial neural network based hybrid model. The results suggest that the IMMPH model provides a better forecast performance than its alternatives, including prediction accuracy, robustness, explanatory power and model complexity. The proposed approach can be potentially extended to other short-term time series forecast applications as well, such as traffic flow forecast.  相似文献   

11.

Automated vehicles (AV) will change transport supply and influence travel demand. To evaluate those changes, existing travel demand models need to be extended. This paper presents ways of integrating characteristics of AV into traditional macroscopic travel demand models based on the four-step algorithm. It discusses two model extensions. The first extension allows incorporating impacts of AV on traffic flow performance by assigning specific passenger car unit factors that depend on roadway type and the capabilities of the vehicles. The second extension enables travel demand models to calculate demand changes caused by a different perception of travel time as the active driving time is reduced. The presented methods are applied to a use case of a regional macroscopic travel demand model. The basic assumption is that AV are considered highly but not fully automated and still require a driver for parts of the trip. Model results indicate that first-generation AV, probably being rather cautious, may decrease traffic performance. Further developed AV will improve performance on some parts of the network. Together with a reduction in active driving time, cars will become even more attractive, resulting in a modal shift towards car. Both circumstances lead to an increase in time spent and distance traveled.

  相似文献   

12.
This study evaluates an existing bus network from the perspectives of passengers, operators, and overall system efficiency using the output of a previously developed transportation network optimisation model. This model is formulated as a bi-level optimisation problem with a transit assignment model as the lower problem. The upper problem is also formulated as bi-level optimisation problem to minimise costs for both passengers and operators, making it possible to evaluate the effects of reducing operator cost against passenger cost. A case study based on demand data for Hiroshima City confirms that the current bus network is close to the Pareto front, if the total costs to both passengers and operators are adopted as objective functions. However, the sensitivity analysis with regard to the OD pattern fluctuation indicates that passenger and operator costs in the current network are not always close to the Pareto front. Finally, the results suggests that, regardless of OD pattern fluctuation, reducing operator costs will increase passenger cost and increase inequity in service levels among passengers.  相似文献   

13.
Public transport networks (PTN) are subject to recurring service disruptions. Most studies of the robustness of PTN have focused on network topology and considered vulnerability in terms of connectivity reliability. While these studies provide insights on general design principles, there is lack of knowledge concerning the effectiveness of different strategies to reduce the impacts of disruptions. This paper proposes and demonstrates a methodology for evaluating the effectiveness of a strategic increase in capacity on alternative PTN links to mitigate the impact of unexpected network disruptions. The evaluation approach consists of two stages: identifying a set of important links and then for each identified important link, a set of capacity enhancement schemes is evaluated. The proposed method integrates stochastic supply and demand models, dynamic route choice and limited operational capacity. This dynamic agent-based modelling of network performance enables to capture cascading network effects as well as the adaptive redistribution of passenger flows. An application for the rapid PTN of Stockholm, Sweden, demonstrates how the proposed method could be applied to sequentially designed scenarios based on their performance indicators. The method presented in this paper could support policy makers and operators in prioritizing measures to increase network robustness by improving system capacity to absorb unexpected disruptions.  相似文献   

14.
Empirical studies have shown that demand for multimodal transport systems is highly correlated with activity schedules of individuals. Nonetheless, existing analytical equilibrium models of multimodal systems have only considered trip-based demand. We propose a new market equilibrium model that is sensitive to traveler activity schedules and system capacities. The model is based on a constrained mixed logit model of activity schedule choice, where each schedule in the choice set is generated with a multimodal extension of the household activity pattern problem. The extension explicitly accounts for both passenger choices of activity participation and multimodal choices like public transit, walking, and vehicle parking. The market equilibrium is achieved with Lagrangian relaxation to determine the optimal dual price of the capacity constraint, and a method of successive averages with column generation finds an efficient choice set of activity schedules to assign flows over the dynamic network load capacities. An example illustrates the model and algorithm, effects similar to Vickrey’s morning commute model can be observed as a special case. A case study of the Oakville Go Transit station access “last mile” problem in the Greater Toronto Area is conducted with 166 survey samples reflecting 3680 individuals. Results suggest that a $10 fixed parking fee at Oakville station would lead to a reduction of access auto share from 54.8% to 49.5%, an increase in access transit share from 20.7% to 25.9%, and a disutility increase of 11% for the of single-activity residents of Oakville.  相似文献   

15.
Extensive work exists on regular rail network planning. However, few studies exist on the planning and design of ring-radial rail transit systems. With more ring transit lines being planned and built in Asia, Europe and the America's, a detailed study on ring transit lines is timely. An analytical model to find the optimal number of radial lines in a city for any demand distribution is first introduced. Secondly, passenger route choice for different rail networks is analyzed, for a many-to-many Origin-Destination (OD) demand distribution, based on a total travel time cost per passenger basis. The routes considered are: (1) radial lines only; (2) ring line only or radial lines and ring line combined; or (3) direct access to a destination without using the rail system. Mathematica and Matlab are used to code the route choice model. A cost-benefit optimization model to identify the feasibility and optimality of a ring line is proposed. Unlike simulations and agent-based models, this model is shown to be easily transferable to many ring-radial transit networks. The City of Calgary is used as an example to illustrate the applicability of each model. The existing urban rail network and trip distribution are major influencing factors in judging the feasibility and optimal location of the ring line. This study shows the potential net benefit of introducing a ring line by assessing changes in passengers’ costs. The changes in passenger cost parameters, such as ride cost and access cost, are shown to greatly influence the feasibility of a ring line.  相似文献   

16.
This paper analyzes benefits from aviation infrastructure investment under competitive supply-demand equilibrium. The analysis recognizes that, in the air transportation system where economies of density is an inherent characteristic, capacity change would trigger a complicated set of adjustment of and interplay among passenger demand, air fare, flight frequency, aircraft size, and flight delays, leading to an equilibrium shift. An analytical model that incorporates these elements is developed. The results from comparative static analysis show that capacity constraint suppresses demand, reduces flight frequency, and increases passenger generalized cost. Our numerical analysis further reveals that, by switching to larger aircraft size, airlines manage to offset part of the delay effect on unit operating cost, and charge passengers lower fare. With higher capacity, airlines tend to raise both fare and frequency while decreasing aircraft size. More demand emerges in the market, with reduced generalized cost for each traveler. The marginal benefit brought by capacity expansion diminishes as the capacity-demand imbalance becomes less severe. Existing passengers in the market receive most of the benefit, followed by airlines. The welfare gains from induced demand are much smaller. The equilibrium approach yields more plausible investment benefit estimates than does the conventional method. In particular, when forecasting future demand the equilibrium approach is capable of preventing the occurrence of excessive high delays.  相似文献   

17.
This paper formulates and examines the passenger flow assignment (itinerary choice) problem in high-speed railway (HSR) systems with multiple-class users and multiple-class seats, given the train schedules and time-varying travel demand. In particular, we take into account advance booking cost of travelers in the itinerary choice problem. Rather than a direct approach to model advance booking cost with an explicit cost function, we consider advance booking cost endogenously, which is determined as a part of the passenger choice equilibrium. We show that this equilibrium problem can be formulated as a linear programming (LP) model based on a three-dimension network representation of time, space, and seat class. At the equilibrium solution, a set of Lagrange multipliers for the LP model are obtained, which are associated with the rigid in-train passenger capacity constraints (limited numbers of seats). We found that the sum of the Lagrange multipliers along a path in the three-dimension network reflects the advance booking cost of tickets (due to advance/early booking to guarantee availability) perceived by the passengers. Numerical examples are presented to demonstrate and illustrate the proposed model for the passenger assignment problem.  相似文献   

18.
Parking demand is a significant land-use problem in campus planning. The parking policies of universities and large corporations with facilities located in small urban areas shape the character of their campuses. These facilities will benefit from a simplified methodology to study the effects of parking availability on transportation mode mix and impacts on recruitment and staffing policies. This paper, based on a case study of North Dakota State University in the United States, introduces an analytical framework to provide planners with insights about how parking supply and demand affects campus transportation mode choice. The methodology relies only on aggregate mode choice data for the special generator zone and the average aggregate volume/capacity ratio projections for all external routes that access the zone. This reduced data requirement significantly lowers analysis cost and obviates the need for specialized modelling software and spatial network analysis tools. Results illustrate that the framework is effective for analysing mode choice changes under different scenarios of parking supply and population growth.  相似文献   

19.
First-best marginal cost toll for a traffic network with stochastic demand   总被引:1,自引:0,他引:1  
First-best marginal cost pricing (MCP) in traffic networks has been extensively studied with the assumption of deterministic travel demand. However, this assumption may not be realistic as a transportation network is exposed to various uncertainties. This paper investigates MCP in a traffic network under stochastic travel demand. Cases of both fixed and elastic demand are considered. In the fixed demand case, travel demand is represented as a random variable, whereas in the elastic demand case, a pre-specified random variable is introduced into the demand function. The paper also considers a set of assumptions of traveler behavior. In the first case, it is assumed that the traveler considers only the mean travel time in the route choice decision (risk-neutral behavior), and in the second, both the mean and the variance of travel time are introduced into the route choice model (risk-averse behavior). A closed-form formulation of the true marginal cost toll for the stochastic network (SN-MCP) is derived from the variational inequality conditions of the system optimum and user equilibrium assignments. The key finding is that the calculation of the SN-MCP model cannot be made by simply substituting related terms in the original MCP model by their expected values. The paper provides a general function of SN-MCP and derives the closed-form SN-MCP formulation for specific cases with lognormal and normal stochastic travel demand. Four numerical examples are explored to compare network performance under the SN-MCP and other toll regimes.  相似文献   

20.
In this paper, we build an aggregate demand model for air passenger traffic in a hub-and-spoke network. This model considers the roles of airline service variables such as service frequency, aircraft size, ticket price, flight distance, and number of spokes in the network. It also takes into account the influence of local passengers and social-economic and demographic conditions in the spoke and hub metropolitan areas. The hub airport capacity, which has a significant impact on service quality in the hub airport and in the whole hub-and-spoke network, is also taken into consideration.Our demand model reveals that airlines can attract more connecting passengers in a hub-and-spoke network by increasing service frequency than by increasing aircraft size in the same percentage. Our research confirms the importance of local service to connecting passengers, and finds that, interestingly, airlines’ services in the first flight leg are more important to attract passengers than those in the second flight segment. Based on data in this study, we also find that a 1% reduction of ticket price will bring about 0.9% more connecting passengers, and a 1% increase of airport acceptance rate can bring about 0.35% more connecting passengers in the network, with all else equal. These findings are helpful for airlines to understand the effects of changing their services, and also useful for us to quantify the benefits of hub airport expansion projects.At the end of this paper, we give an example as an application to demonstrate how the developed demand model could be used to valuate passengers’ direct benefit from airport capacity expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号