首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解钢管混凝土箱形叠合超高墩的设计理念和结构静力性能,以金阳河特大桥为背景,分析该类桥墩各部分作用和受力特性,并开展静力性能研究。该类桥墩内部的钢管混凝土格构柱为主要受力结构,并作为外包钢筋混凝土施工的劲性骨架;各柱肢钢管外包薄层钢筋混凝土以提高桥墩承载力;连接各柱肢的钢筋混凝土腹板参与抗剪。采用MIDAS Civil软件分析对比钢管混凝土箱形叠合超高墩和钢筋混凝土薄壁空心超高墩的静力性能。结果表明:最大悬臂施工阶段和成桥阶段,钢管混凝土箱形叠合超高墩的一阶弹性稳定系数大于钢筋混凝土薄壁空心超高墩;从墩顶向墩底分段增大钢管管径和壁厚,可使钢管和外包混凝土应力沿墩高方向不变;外包混凝土应力远小于钢筋混凝土薄壁空心超高墩,可采用较薄的低强度混凝土。  相似文献   

2.
针对有初始缺陷的薄壁高墩大跨径连续刚构桥在施工阶段的稳定性问题展开研究,以沪蓉西高速公路宜恩段野三河大桥为工程背景,采用一致缺陷模态法,以桥墩的一阶屈曲模态为基础,计算分析单肢薄壁高墩分别在具有单向和双向初始几何缺陷时的稳定承载能力,得出初始几何缺陷对高墩稳定性的影响规律,发现纵桥向的初始几何缺陷较横桥向对稳定承载力的影响更大;当引入双向初始几何缺陷时,单肢薄壁高墩的稳定承载力较仅含单向初始几何缺陷时迅速下降。在对含初始几何缺陷薄壁高墩稳定承载力计算结果进行总结的基础上,对山区高墩垂直度控制给出参考建议,研究了局部材料缺陷对高墩稳定性的影响效应,找出局部材料缺陷出现的最不利位置。研究成果可为具有初始缺陷的桥墩稳定性研究提供参考。  相似文献   

3.
针对有初始缺陷的薄壁高墩大跨径连续刚构桥在施工阶段的稳定性问题展开研究,以沪蓉西高速公路宜恩段野三河大桥为工程背景,采用一致缺陷模态法,以桥墩的一阶屈曲模态为基础,计算分析单肢薄壁高墩分别在具有单向和双向初始几何缺陷时的稳定承载能力,得出初始几何缺陷对高墩稳定性的影响规律,发现纵桥向的初始几何缺陷较横桥向对稳定承载力的影响更大;当引入双向初始几何缺陷时,单肢薄壁高墩的稳定承载力较仅含单向初始几何缺陷时迅速下降.在对含初始几何缺陷薄壁高墩稳定承载力计算结果进行总结的基础上,对山区高墩垂直度控制给出参考建议,研究了局部材料缺陷对高墩稳定性的影响效应,找出局部材料缺陷出现的最不利位置.研究成果可为具有初始缺陷的桥墩稳定性研究提供参考.  相似文献   

4.
雅泸高速公路黑石沟特大桥在国内首次提出并采用了钢管混凝土组合格构柱高墩。为研究这种结构形式高墩的组合性能,进行了偏压试验和破坏试验,考察了钢管混凝土柱肢、钢管外包混凝土及腹板剪力墙的受力性能。试验结构表明:正常使用极限状态下,钢管混凝土组合格构柱处于小偏心受压,结构处于弹性状态。  相似文献   

5.
《公路》2018,(11)
高墩大跨连续刚构桥对于山区V形峡谷地带有较好的适用性,桥墩结构形式多采用双肢薄壁墩,在薄壁墩施工时一般采用滑模法施工,由于滑模本身缺陷或立模偏差的偶然性所产生的桥墩结构初始缺陷,对高墩的稳定性及全桥结构受力状态必然产生一定的影响,通过建立有限元模型并赋予桥墩初始缺陷,分析桥梁结构各受力状态对于桥墩初始施工缺陷的敏感性。  相似文献   

6.
桥梁的动力特性是结构动力分析和抗震研究的重要基础。作为一种新型桥墩结构形式,钢管混凝土组合墩已应用到跨越峡谷的特大跨度刚构桥中。基于有限元法,以具有亚洲第一高墩的四川雅泸高速公路腊八斤特大桥为工程背景,研究了钢管混凝土高墩的结构参数对结构动力性能的影响,得出了桥墩高度、桥墩截面形式及面积等结构参数变化对动力特性的影响及规律,研究的结论可为该类桥梁后续进行的抗震分析奠定基础。  相似文献   

7.
为研究地震作用下钢管混凝土组合桁梁-格构墩轻型桥梁的行车安全性,以干海子特大桥为研究对象,建立考虑地震作用的车桥耦合振动方程,并将计算方法添加到基于梁单元的双重非线性有限元程序NL_Beam3D中,实现地震作用下车桥系统相互作用的耦合计算。考虑车辆倾覆指标和桥梁横向变形的影响,进行行车安全性分析。结果表明:有限元计算得到的基频和不同车速下最大动挠度与实桥荷载试验得到的结果接近;与已有振动台试验结果相比,位移时程曲线形状吻合,位移幅值满足相似比关系,验证了计算模型和方法的有效性。柔性高墩轻型桥梁对地震波有滤波效应,地震波传至桥梁时强度明显减弱;最不利的重型货车的倾覆指标阈值大于E1多遇地震时的桥面最大横向加速度,即不存在车辆侧倾现象;墩顶位移满足设计要求,干海子特大桥行车安全性能良好。部分墩顶横向位移在地面峰值加速度达到1. 6倍E1多遇地震动时,将超过《公路钢管混凝土桥梁设计与施工指南》给出的限值。桥面最大加速度在地面峰值加速度为2倍E1多遇地震动时,倾覆指标阈值小于桥面最大横向加速度,重型货车存在倾覆可能;对应的桥墩墩顶最大横向位移与墩高比例系数达1/198,大于指南限值1/300,说明该指南对桥墩墩顶位移限值规定相对比较保守。  相似文献   

8.
高墩大跨径预应力连续刚构桥稳定性研究   总被引:1,自引:0,他引:1  
利用空间有限元法对钢管混凝土叠合柱特高墩预应力混凝土连续刚构桥的空间稳定性进行了计算分析,以某特大桥为例,当墩高达到180m时,最大双悬臂施工状态的结构稳定性安全储备最低。计算结果表明,结构的计算模型及几何特征对其稳定性的影响较大,且应对钢管混凝土叠合柱高墩刚构桥的主梁施工过程进行严密监控。  相似文献   

9.
为了对比单肢箱形薄壁高墩与双肢矩形薄壁高墩在不同荷载工况下的线弹性稳定性与非线性弹塑性稳定性,以吕梁环城高速公路机场2号大桥为工程背景,采用Ansys10.0软件建立有限元模型,研究了温度、风荷载、墩顶弯矩、汽车制动力、施工缺陷等因素对2类高墩初始几何缺陷的影响程度,分析了纵桥向、横桥向和双向初始几何缺陷对2类高墩稳定性的影响。研究结果表明:单肢箱形薄壁截面高墩的线弹性稳定性比双肢矩形薄壁截面高墩好;日照、风载、汽车制动力等因素对单、双肢薄壁高墩纵、横桥向位移影响并不相同;双向初始几何缺陷对结构的弹塑性稳定性影响最大,在相同的双向初始几何缺陷下,单肢箱形薄壁高墩稳定性系数的降幅比双肢矩形薄壁高墩大。  相似文献   

10.
以干海子钢管混凝土冬期施工为背景。干海子特大桥冬期长,平均气温-4.7℃。采用亚硝酸钠作为防冻剂,结合钢纤维与膨胀剂,制备出了含气量低、粘聚性好、包裹性佳、自密实的钢纤维微膨胀抗冻混凝土,分析了其在低温下的强度发展规律,通过SEM观测了其28d龄期水化产物形貌特征。结果表明:亚硝酸钠掺量占胶凝材料重量的0.4%时,钢管钢纤维微膨胀混凝土在-5℃不冻坏,SEM照片显示钙矾石与CSH凝胶生长状况良好。在现场低温条件下灌注了6根钢管混凝土短柱,同时利用桁架梁钢管混凝土灌注施工形成的冒浆管钢管混凝土切割出了27个短柱试件,研究了低温灌注与养护、后期升温对钢管混凝土构件承载力的影响。试验表明:低温灌注对掺0.4%亚硝酸钠钢管钢纤维微膨胀混凝土构件的承载力无明显影响,后期温度升高后其强度发展稳定,满足干海子钢管混凝土冬期施工要求。  相似文献   

11.
《公路》2015,(10)
为研究大跨连续刚构桥的双肢薄壁高墩有效计算长度,以某三跨预应力混凝土连续刚构桥为工程背景,利用ANSYS建立其初始空间三维有限元模型,通过结构整体稳定分析得到构件临界荷载,再由欧拉公式反推桥墩有效计算长度。根据全桥失稳模态分析结果提出了双肢墩有效计算长度简化模型,据此对悬臂施工大跨度连续刚构桥的高墩有效计算长度进行了系统性研究。结果表明,施工和成桥阶段的高墩横桥向有效计算长度系数均可取值2.0;高墩纵桥向有效长度系数可根据本文提出的建议值查表插值取用。  相似文献   

12.
钢管混凝土空腹结构的双重非线性简化分析方法   总被引:2,自引:1,他引:1  
采用考虑剪切变形的Timoshenko梁的刚度矩阵,用抗剪刚度和抗弯刚度之比来考虑剪切变形对抗弯刚度的影响,得出空腹结构连续化成一根杆件的刚度矩阵.在单元刚度计算时,弦杆(或柱肢)和腹杆均采用了有效轴压刚度,考虑了空腹结构组成杆件的初弯曲对整体结构稳定的影响.采用FORTRAN语言编制了程序.算例表明简化算法计算结果与传统杆系模型有限元方法计算结果吻合良好,用于钢管混凝土空腹结构的极限承载力分析,可大幅度减少单元数,从而简化计算,节省机时.探讨了相关屈曲和剪切变形对钢管混凝土空腹结构极限承载力的影响.研究结果表明,随着长细比的增大,剪切变形影响逐渐减小,随着弦杆与腹杆的面积比的增大,剪切变形影响增大.对于钢管混凝土格构柱,当λ1>λ(λ1为柱肢长细比;λ为柱整体长细比)时,发生柱肢局部屈曲失稳;当λ1<λ时,发生整体屈曲失稳;在λ1=λ及其附近时,柱肢与整体的相关屈曲最明显.  相似文献   

13.
高烈度地震山区高墩大跨径连续刚构桥具有桥墩高度差异大、上部结构质量重、地震力大等特点,桥梁减震是设计重点。为了提高大跨径连续刚构桥的抗震性能,从上部结构轻型化、墩型优化、桥墩刚度匹配、阻尼器耗能等方面进行了减震技术研究。结果表明:1)主桥箱梁采用陶粒轻质混凝土或部分节段采用高强度活性粉末混凝土,可减轻上部结构重量,减小地震力; 2)主墩采用钢管混凝土格构式空心薄壁墩,可减轻下部结构重量,降低桥墩刚度,减小桥墩地震力; 3)优化高、低墩截面尺寸,调整桥墩刚度,可使各桥墩的承载力与所受地震力相匹配; 4)在梁端设置非线性粘滞阻尼器,可减小顺桥向地震力和位移。  相似文献   

14.
基于贵州某大跨度钢管混凝土拱桥,通过对静风荷载下大跨度的钢管混凝土拱桥其所产生的最大位移进行模拟计算,并使用有限元计算方式建立大跨度钢管混凝土拱桥梁体、墩台、基础相互作用的一体化模型,对静风荷载作用下的桥位移进行了数值模拟。结果表明,梁体、墩台在静风荷载的作用下会有较大的横向位移产生,在梁体中间位置出现最大值;在梁体、墩台等位置受到最大静风荷载时,横向位移生成的轨向不平顺值要比高速铁路产生的不平顺管理值小得多。在静风荷载下,桥体的桥型对其高墩所产生的横向位移数值影响效果并不明显,当该桥体呈现连续桥梁和连续刚构桥时,边墩墩顶的横向位移相差为0.51 mm;中墩墩顶横向位移分别为7.0、6.7 mm。高墩大跨桥梁纵向位移会受到不同桥型的影响。在不同初始荷载集度达到极限状态时,内力和位移曲线形状非常相似,这说明根据设计的初始荷载集度,计算得到的位移变化曲线可对结构极限承载力进行精确分析。  相似文献   

15.
以矮寨刚构桥为工程背景,利用MIDAS/Civil建立有限元模型,对高墩进行稳定性分析,主要考虑风荷载、初始偏心及局部材料缺陷对高墩稳定的影响.结果表明,在风荷载作用下,高墩稳定性较好,表现为顺桥向弯曲失稳;随着初始偏心距的增大,桥墩的稳定安全系数逐步减小,同时由于高墩的细长比较大,其位移效应不能忽略,在对其进行稳定性分析时,应考虑几何非线性的稳定安全系数;高墩的稳定安全系数随着局部材料强度的降低而逐渐减小,局部材料缺陷发生位置越靠近墩底,其安全稳定系数越低.  相似文献   

16.
钢管活性粉末混凝土轴压短柱受力性能试验研究   总被引:3,自引:0,他引:3  
进行22根钢管活性粉末混凝土(钢管RPC)轴压短柱试验,分析其荷载-变形曲线、破坏特征和影响极限承载力的主要因素。试验研究表明:钢管RPC轴压短柱的荷载-纵向应变曲线弹性阶段约为极限荷载的90%~95%;套箍系数ξ较小时,在达到极限荷载后承载力急剧下降;ξ较大时,在达到极限荷载后承载力下降平缓并呈回升趋势。ξ较小的试件多呈剪切破坏形态;ξ较大的试件所有断面上均被墩粗,试件的上、下两端明显局部鼓曲。构件承载力随RPC强度fc的提高而提高,两者基本成线性关系;套箍系数ξ越大,构件承载力也越大,但钢管对RPC的约束效果比对普通混凝土的差。提出的钢管RPC轴压短柱极限承载力的实用计算公式计算出的结果与试验结果吻合良好。  相似文献   

17.
基于雅泸高速公路腊八斤特大桥温度场连续观测结果,研究了寒流作用下钢管混凝土高墩温度场的分布和变化规律。利用数理统计方法,拟合了截面寒流降温模式的温度梯度,结果表明:沿钢管混凝土柱截面径向温度变化中,越靠近钢管中心,温度变化越滞后于大气温度;寒流作用下钢管混凝土柱截面径向的温度梯度可用三次多项式来表示;腹板温差可用指数函数来表示。负温差使高墩表面产生较大的拉应力与墩顶偏位,且对成桥后的内力有着不可忽视的影响。  相似文献   

18.
高速公路跨线桥黄延桥为(24+40+24)m连续刚构体系PBL加劲型矩形钢管混凝土组合桁梁桥。该桥主梁采用矩形钢管桁架和混凝土行车道板构成的组合桁梁;桥墩采用Y形双肢矩形钢管混凝土树状桥墩,下设菱形承台+钻孔灌注桩基础。在负弯矩区下弦杆和Y形桥墩的矩形钢管内设置PBL纵肋并灌注混凝土,形成PBL加劲型矩形钢管混凝土断面,以提高杆件承载力、改善受压钢管局部屈曲性能。为提高该桥PBL加劲型矩形钢管混凝土节点的承载力、改善节点的失效模式,采取主管内灌注混凝土和支管与主管同宽两项优化措施。混凝土桥面板通过上弦闭口PBL开孔预埋钢板连接件与主桁相连。桥墩通过纵、横向呈方格网络集中布置的PBL开孔钢板与承台固结。  相似文献   

19.
为了探讨大尺寸钢管混凝土柱的初始偏心和开洞插管初始缺陷对其承载力的影响规律,以某钢管混凝土拱桥主拱肋Φ1 200×24 mm钢管为原型,采用1∶2.4,1∶4.8两种几何比例尺分别制作了长径比为3∶1的钢管混凝土柱试件,进行了轴压和偏压试验,并将承载力试验结果与中国现行相关规范的承载力计算结果进行了对比。结果表明:钢管混凝土柱的承载力试验值均大于规范计算值,大尺寸试件和小尺寸试件轴压承载力与规范的比值相差不大,但是大尺寸试件的屈服应力较高,开洞插管的试件由于内插钢管的屈服失效而导致整体试件屈服应力较低;CECS 28:90规范对承载力的规定与试验值较为接近,DL/T 5085—1999规范对承载力的规定安全系数最高;偏心受压和开洞插管均会导致钢管混凝土柱承载力降低,降幅分别达22%和15%。  相似文献   

20.
巫峡长江大桥极限承载能力分析   总被引:2,自引:0,他引:2  
针对大跨度钢管混凝土拱桥在变形、失稳破坏期间产生的材料和几何非线性特性,考虑拱肋初始几何缺陷和结构在施工期间所形成的初应力等因素的影响,采用高精度的圆截面梁单元和钢管混凝土组合材料的本构关系,对巫峡长江大桥在静力荷载作用下的极限承载力进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号