首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Upon having loaded and unloaded their passengers, buses are often free to exit a multi-berth bus stop without delay. A bus need not wait to perform this exit maneuver, even if it requires circumventing one or more other buses that are still dwelling in the stop’s downstream berths. Yet, many jurisdictions impose restrictions on bus entry maneuvers into a stop to limit disruptions to cars and other buses. Buses are typically prohibited from entering a stop whenever this would require maneuvering around other buses still dwelling in upstream berths. An entering bus is instead required to wait in queue until the upstream berths are vacated.Analytical models are formulated to predict how bus discharge flows from busy, multi-berth stops are affected by allowing buses to freely exit, but not freely enter berths. These models apply when: a bus queue is always present at the stop’s entrance; buses depart the entry queue and enter the stop as per the restriction described above; and the stop is isolated from the effects of nearby traffic signals and other bus stops. We find that for these restricted-entry stops, bus-carrying capacities can often be improved by regulating the exit maneuvers as well. This turns out to be particularly true when the stop’s number of berths is large. Simulations show that these findings still hold when a stop is only moderately busy with entry queues that persist for much, but not all of the time. The simulations also indicate that removing any restrictions on bus exit maneuvers is almost always productive when stops are not busy, such that short entry queues form only on occasion, and only for short periods. We argue why certain simple policies for regulating exit maneuvers would likely enhance bus-stop discharge flows.  相似文献   

2.
How to estimate queue length in real-time at signalized intersection is a long-standing problem. The problem gets even more difficult when signal links are congested. The traditional input–output approach for queue length estimation can only handle queues that are shorter than the distance between vehicle detector and intersection stop line, because cumulative vehicle count for arrival traffic is not available once the detector is occupied by the queue. In this paper, instead of counting arrival traffic flow in the current signal cycle, we solve the problem of measuring intersection queue length by exploiting the queue discharge process in the immediate past cycle. Using high-resolution “event-based” traffic signal data, and applying Lighthill–Whitham–Richards (LWR) shockwave theory, we are able to identify traffic state changes that distinguish queue discharge flow from upstream arrival traffic. Therefore, our approach can estimate time-dependent queue length even when the signal links are congested with long queues. Variations of the queue length estimation model are also presented when “event-based” data is not available. Our models are evaluated by comparing the estimated maximum queue length with the ground truth data observed from the field. Evaluation results demonstrate that the proposed models can estimate long queues with satisfactory accuracy. Limitations of the proposed model are also discussed in the paper.  相似文献   

3.
On the capacity of isolated, curbside bus stops   总被引:2,自引:0,他引:2  
The maximal rates that buses can discharge from bus stops are examined. Models were developed to estimate these capacities for curbside stops that are isolated from the effects of traffic signals. The models account for key features of the stops, including their target service levels assigned to them by a transit agency. Among other things, the models predict that adding bus berths to a stop can sometimes return disproportionally high gains in capacity. This and other of our findings are at odds with information furnished in professional handbooks.  相似文献   

4.
Headway control strategies have been proposed as methods for correcting transit service irregularities and thereby reducing passenger wait times at stops. This paper addresses a particular strategy which can be implemented on high frequency routes (headways under 10–12 minutes), in which buses are held at a control stop to a threshold headway. An algorithm is developed which yields the optimal control stop location and optimal threshold headway with respect to a system wait function. The specification of the wait function is based on the development of several empirical models, including a headway variation model and an average delay time model at control stops. A conclusion is reached that the headway variation does not increase linearly along a route, a common assumption made in many previous studies. Furthermore, the location of the optimal control stop and threshold value are sensitive to the passenger boarding profile, as expected. The algorithm itself appears to have practical application to conventional transit operations.  相似文献   

5.
In this paper, we use second-by-second automatic vehicle location data to estimate bus emissions near far-side and near-side stops. We classify the bus running state near a stop into approach, dwell, and departure. A vehicle specific power approach is used to estimate bus emissions for each state. We show that bus emissions generated near stops can be significantly reduced by using certain intelligent transportation systems techniques.  相似文献   

6.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A numerical method has been developed for estimating delays on congested waterways. Analytic and numerical results are presented for series of G/G/1 queues, i.e. with generally distributed arrivals and service times and single chambers at each lock. One or two-way traffic operations are modelled. A metamodelling approach which develops simple formulas to approximate the results of simulation models is presented. The structure of the metamodels is developed from queueing theory while their coefficients are statistically estimated from simulation results. The numerical method consists of three modules: (1) delays, (2) arrivals and (3) departures. The first estimates the average waiting time for each lock when the arrival and service time distributions at this lock are known. The second identifies the relations between the arrival distributions at one lock and the departure distributions from the upstream and downstream locks. The third estimates the mean and variance of inter-departure times when the inter-arrival and service time distributions are known. The method can be applied to systems with two-way traffic through common bi-directional servers as well as to one-way traffic systems. Algorithms for both cases are presented. This numerical method is shown to produce results that are close to the simulation results. The metamodels developed for estimating delays and variances of inter-departure times may be applied to waterways and other series of G/G/1 queues. These metamodels for G/G/1 queues may provide key components of algorithms for analyzing networks of queues.  相似文献   

8.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

9.
Abstract

A model is proposed to calculate the overall operating and delay times spent at bus stops due to passenger boarding and alighting and the time lost to queuing caused by bus stop saturation. A formula for line demand at each stop and the interaction between the buses themselves is proposed and applied to different bus stops depending on the number of available berths. The application of this model has quantified significant operational delays suffered by users and operator due to consecutive bus arrival at stops, even with flows below bus stop capacity.  相似文献   

10.
Transit vehicles stopping to load/unload passengers on-line at a signalized intersection can obstruct the flow of other vehicles. The TRANSYT model ignores the delay to other traffic caused by this loading/unloading process. This can cause TRANSYT to use incorrect flow profiles, resulting in signal timings that cater to these profiles rather than the actual ones. This paper describes a new model for representing near-side transit stops in lanes shared by public transit and private vehicles, and its implementation into the TRANSYT-7F program. The results of an initial application of the proposed model are also described. The proposed model, which is a deterministic simulation model, is able to represent the effect of near-side transit stops on the other traffic; this representation covers both total and partial blockage of the approaches during the transit loading. The procedure has been incorporated into the TRANSYT-7F program. This allows appropriate representation of the adverse effects of transit loading on-line during a green phase. It thus encourages the TRANSYT optimizer to push transit loading to the red phases.  相似文献   

11.
12.
A vehicle approaching a toll plaza observes the queues at each of the available toll-lanes before choosing which to join. This choice process, the arrival process of vehicles and the service characteristics of the toll-booths, affect the queues and delay the drivers. In this paper, queueing at a toll plaza is modelled as a multiple-queue queueing system where the arrival process to a queue (toll-lane) is dependent on the state of all the queues. In the past, such systems have been modelled mathematically only for two queues and are not applicable for toll plazas with three or more toll-lanes. The proposed model determines the steady-state probability density function (pdf) for the queues at large toll plazas. This study is used to determine the number of toll-lanes or the length of the upstream queueing area required to achieve certain user-specified levels-of-service. Expected delay and maximum queue length are used as level-of-service measures. Indicative design charts are also provided.  相似文献   

13.
In transportation and other types of facilities, various queues arise when the demands of service are higher than the supplies, and many point and fluid queue models have been proposed to study such queueing systems. However, there has been no unified approach to deriving such models, analyzing their relationships and properties, and extending them for networks. In this paper, we derive point queue models as limits of two link-based queueing model: the link transmission model and a link queue model. With two definitions for demand and supply of a point queue, we present four point queue models, four approximate models, and their discrete versions. We discuss the properties of these models, including equivalence, well-definedness, smoothness, and queue spillback, both analytically and with numerical examples. We then analytically solve Vickrey’s point queue model and stationary states in various models. We demonstrate that all existing point and fluid queue models in the literature are special cases of those derived from the link-based queueing models. Such a unified approach leads to systematic methods for studying the queueing process at a point facility and will also be helpful for studies on stochastic queues as well as networks of queues.  相似文献   

14.
Abstract

This paper presents an improved headway-based holding strategy integrating bus transit travel and dwelling time prediction. A support vector machine-based (SVM) model is developed to predict the baseline travel and dwell times of buses based on recent data. In order to reduce prediction errors, an adaptive algorithm is used together with real-time bus operational information and estimated baseline times from SVM models. The objective of the improved holding strategy is to minimize the total waiting times of passengers at the current stop and at successive stops. Considering the time-varying features of bus running, a ‘forgetting factor’ is introduced to weight the most recent data and reduce the disturbance from unexpected incidents. Finally, the improved holding strategy proposed in this study is illustrated using the microscopic simulation model Paramics and some conclusions are drawn.  相似文献   

15.
In this paper, we present a Smart In-Vehicle Decision Support System (SIV-DSS) to help making better stop/go decisions in the indecision zone as a vehicle is approaching a signalized intersection. Supported by the Vehicle-to-Infrastructure (V2I) communications, the system integrates and utilizes the information from both vehicle and intersection. The effective decision support models of SIV-DSS are realized with the probabilistic sequential decision making process with the capability of combining a variety of advantages gained from a set of decision rules, where each decision rule is responsible to specific situations for making right decisions even without complete information. The decision rules are either extracted from the existing parametric models of the indecision zone problem, or designed as novel ones based on physical models utilizing the integrated information containing the key inputs from vehicle motion, vehicle-driver characteristics, intersection geometry and topology, signal phase and timings, and the definitions of red-light running (RLR). In SIV-DSS, the generality is reached through physical models utilizing a large number of accurate physical parameters, and the heterogeneity is treated by including a few behavioral parameters in driver characteristics. The performance of SIV-DSS is evaluated with systematic simulation experiments. The results show that the system can not only ensure traffic safety by greatly reducing the RLR probability, but also improve mobility by significantly reducing unnecessary stops at the intersection. Finally, we briefly discuss some relevant aspects and implications for SIV-DSS in practical implementations.  相似文献   

16.
If bus service departure times are not completely unknown to the passengers, non-uniform passenger arrival patterns can be expected. We propose that passengers decide their arrival time at stops based on a continuous logit model that considers the risk of missing services. Expected passenger waiting times are derived in a bus system that allows also for overtaking between bus services. We then propose an algorithm to derive the dwell time of subsequent buses serving a stop in order to illustrate when bus bunching might occur. We show that non-uniform arrival patterns can significantly influence the bus bunching process. With case studies we find that, even without exogenous delay, bunching can arise when the boarding rate is insufficient given the level of overall demand. Further, in case of exogenous delay, non-uniform arrivals can either worsen or improve the bunching conditions, depending on the level of delay. We conclude that therefore such effects should be considered when service control measures are discussed.  相似文献   

17.
Transit signal priority (TSP) may be combined with road-space priority (RSP) measures to increase its effectiveness. Previous studies have investigated the combination of TSP and RSP measures, such as TSP with dedicated bus lanes (DBLs) and TSP with queue jump lanes (QJLs). However, in these studies, combined effects are usually not compared with separate effects of each measure. In addition, there is no comprehensive study dedicated to understanding combined effects of TSP and RSP measures. It remains unclear whether combining TSP and RSP measures creates an additive effect where the combined effect of TSP and RSP measures is equal to the sum of their separate effects. The existence of such an additive effect would suggest considerable benefits from combining TSP and RSP measures. This paper explores combined effects of TSP and RSP measures, including TSP with DBLs and TSP with QJLs. Analytical results based on time-space diagrams indicate that at an intersection level, the combined effect on bus delay savings is smaller than the additive effect if there is no nearside bus stop and the traffic condition in the base case is under-saturated or near-saturated. With a near-side bus stop, the combined effect on bus delay savings at an intersection level can be better than the additive effect (or over-additive effect), depending on dwell time, distance from the bus stop to the stop line, traffic demand, and cycle length. In addition, analytical results suggest that at an arterial level, the combined effect on bus delay savings can be the over-additive effect with suitable signal offsets. These results are confirmed by a micro-simulation case study. Combined effects on arterial and side-street traffic delays are also discussed.  相似文献   

18.
Although real-time Automatic Vehicle Location (AVL) data is being utilised successfully in the UK, little notice has been given to the benefits of historical (non-real-time) AVL data. This paper illustrates how historical AVL data can be used to identify segments of a bus route which would benefit most from bus priority measures and to improve scheduling by highlighting locations at which the greatest deviation from schedule occurs. A new methodology which uses historical AVL data and on-bus passenger counts to calculate the passenger arrival rate at stops along a bus route has been used to estimate annual patronage and the speed of buses as they move between stops. Estimating the patronage at stops using AVL data is more cost-effective than conventional methods (such as surveys at stops which require much more manpower) but retains the benefits of accuracy and stop-specific estimates of annual patronage. The passenger arrival rate can then be used to calculate how long buses spend at stops. If the time buses spend at stops is removed from the total time it takes the bus to traverse a link, the remaining amount of time can be assumed to be the time the bus spends moving and hence the moving speed of the bus can be obtained. It was found that estimation of patronage and the speed of buses as they move between stops using AVL data produced results which were comparable with those obtained by other methods. However the main point to note is that this new method of estimating patronage has the potential to provide a larger and superior data set than is otherwise available, at very low cost.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号