首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a liner container seasonal shipping revenue management problem for a container shipping company. For a given weekly multi-type shipment demand pattern in a particular season, the proposed problem aims to maximize the total seasonal shipping profit by determining the number of multi-type containers to be transported and assigned on each container route, the number of containerships deployed on each ship route, and the sailing speed of containerships on each shipping leg subject to both the volume and capacity constraints of each containership. By adopting the realistic bunker consumption rate of a containership as a function of its sailing speed and payload (displacement), we develop a mixed-integer nonlinear programing with a nonconvex objective function for the proposed liner container seasonal shipping revenue management problem. A tailored branch and bound (B&B) method is designed to obtain the global ε-optimal solution of the model. Numerical experiments are finally conducted to assess the efficiency of the solution algorithm and to show the applicability of the developed model.  相似文献   

2.
This paper examines the optimal containership schedule with transit-time-sensitive demand that is assumed to be a decreasing continuous function of transit time. A mixed-integer nonlinear non-convex optimization model is first formulated to maximize the total profit of a ship route. In view of the problem structure, a branch-and-bound based holistic solution method is developed. It is rigorously demonstrated that this solution method can obtain an ε-optimal solution in a finite number of iterations for general forms of transit-time-sensitive demand. Computational results based on a trans-Pacific liner ship route demonstrate the applicability and efficiency of the solution method.  相似文献   

3.
This paper proposes a practical tactical-level liner container assignment model for liner shipping companies, in which the container shipment demand is a non-increasing function of the transit time. Given the transit-time-sensitive demand, the model aims to determine which proportion of the demand to fulfill and how to transport these containers in a liner shipping network to maximize the total profit. Although the proposed model is similar to multi-commodity network-flow (MCNF) with side constraints, unlike the MCNF with time delay constraints or reliability constraints that is NP-hard, we show that the liner container assignment model is polynomially solvable due to its weekly schedule characteristics by developing two link-based linear programing formulations. A number of practical extensions and applications are analyzed and managerial insights are discussed. The polynomially solvable liner container assignment model is then applied to address several important decision problems proposed by a global liner shipping company.  相似文献   

4.
This paper develops three game-theoretical models to analyze shipping competition between two carriers in a new emerging liner container shipping market. The behavior of each carrier is characterized by an optimization model with the objective to maximize his payoff by setting optimal freight rate and shipping deployment (a combination of service frequency and ship capacity setting). The market share for each carrier is determined by the Logit-based discrete choice model. Three competitive game strategic interactions are further investigated, namely, Nash game, Stackelberg game and deterrence by taking account of the economies of scale of the ship capacity settings. Three corresponding competition models with discrete pure strategy are formulated as the variables in shipment deployment are indivisible and the pricing adjustment is step-wise in practice. A ɛ -approximate equilibrium and related numerical solution algorithm are proposed to analyze the effect of Nash equilibrium. Finally, the developed models are numerically evaluated by a case study. The case study shows that, with increasing container demand in the market, expanding ship capacity setting is preferable due to its low marginal cost. Furthermore, Stackelberg equilibrium is a prevailing strategy in most market situations since it makes players attain more benefits from the accommodating market. Moreover, the deterrence effects largely depend on the deterrence objective. An aggressive deterrence strategy may make potential monopolist suffer large benefit loss and an easing strategy has little deterrence effect.  相似文献   

5.
Container liner shipping companies only partially alter their shipping networks to cope with the changing demand, rather than entirely redesign and change the network. In view of the practice, this paper proposes an optimal container liner shipping network alteration problem based on an interesting idea of segment, which is a sequence of legs from a head port to a tail port that are visited by the same type of ship more than once in the existing shipping network. In segment-based network alteration, the segments are intact and each port is visited by the same type of ship and from the same previous ports. As a result, the designed network needs minimum modification before implementation. A mixed-integer linear programming model with a polynomial number of variables is developed for the proposed segmented-based liner shipping network alternation problem. The developed model is applied to an Asia–Europe–Oceania liner shipping network with a total of 46 ports and 11 ship routes. Results demonstrate that the problem could be solved efficiently and the optimized network reduces the total cost of the initial network considerably.  相似文献   

6.
This paper presents a cost scaling based successive approximation algorithm, called ε-BA (ε-optimal bush algorithm), to solve the user equilibrium traffic assignment problem by successively refining ε-optimal flows. As ε reduces to zero, the user equilibrium solution is reached. The proposed method is a variant of bush-based algorithms, and also a variant of the min-mean cycle algorithm to solve the min-cost flow by successive approximation. In ε-BA, the restricted master problem, implying traffic equilibration restricted on a bush, is solved to ε-optimality by cost scaling before bush reconstruction. We show that ε-BA can reduce the number of flow operations substantially in contrast to Dial’s Algorithm B, as the former operates flows on a set of deliberately selected cycles whose mean values are sufficiently small. Further, the bushes can be constructed effectively even if the restricted master problem is not solved to a high level of convergence, by leveraging the ε-optimality condition. As a result, the algorithm can solve a highly precise solution with faster convergence on large-scale networks compared to our implementation of Dial’s Algorithm B.  相似文献   

7.
This paper proposes a state-augmented shipping (SAS) network framework to integrate various activities in liner container shipping chain, including container loading/unloading, transshipment, dwelling at visited ports, in-transit waiting and in-sea transport process. Based on the SAS network framework, we develop a chance-constrained optimization model for a joint cargo assignment problem. The model attempts to maximize the carrier’s profit by simultaneously determining optimal ship fleet capacity setting, ship route schedules and cargo allocation scheme. With a few disparities from previous studies, we take into account two differentiated container demands: deterministic contracted basis demand received from large manufacturers and uncertain spot demand collected from the spot market. The economies of scale of ship size are incorporated to examine the scaling effect of ship capacity setting in the cargo assignment problem. Meanwhile, the schedule coordination strategy is introduced to measure the in-transit waiting time and resultant storage cost. Through two numerical studies, it is demonstrated that the proposed chance-constrained joint optimization model can characterize the impact of carrier’s risk preference on decisions of the container cargo assignment. Moreover, considering the scaling effect of large ships can alleviate the concern of cargo overload rejection and consequently help carriers make more promising ship deployment schemes.  相似文献   

8.
We propose the problem of profit-based container assignment (P-CA), in which the container shipment demand is dependent on the freight rate, similar to the “elastic demand” in the literature on urban transportation networks. The problem involves determining the optimal freight rates, the number of containers to transport and how to transport the containers in a liner shipping network to maximize the total profit. We first consider a tactical-level P-CA with known demand functions that are estimated based on historical data and formulate it as a nonlinear optimization model. The tactical-level P-CA can be used for evaluating and improving the container liner shipping network. We then address the operational-level P-CA with unknown demand functions, which aims to design a mechanism that adjusts the freight rates to maximize the profit. A theoretically convergent trial-and-error approach, and a practical trial-and-error approach, are developed. A numerical example is reported to illustrate the application of the models and approaches.  相似文献   

9.
Container liner fleet deployment (CLFD) is the assignment of containerships to port rotations (ship routes) for efficient transport of containers. As liner shipping services have fixed schedules, the ship-related operating cost is determined at the CLFD stage. This paper provides a critical review of existing mathematical models developed for the CLFD problems. It first gives a systematic overview of the fundamental assumptions used by the existing CLFD models. The operating characteristics dealt with in existing studies are then examined, including container transshipment and routing, uncertain demand, empty container repositioning, ship sailing speed optimization and ship repositioning. Finally, this paper points out four important future research opportunities: fleet deployment considering ship surveys and inspections, service dependent demand, pollutant emissions, and CLFD for shipping alliances.  相似文献   

10.
Abstract

Since 1990s the liner shipping industry has faced a period of restructuring and consolidation, and been confronted with a continuing increase in container vessel scale. The impact of these changes is noticeable in trade patterns, cargo handling methods and shipping routes, in short ‘operations’. After listing factors influencing size, growth in container ship size is explained by economies of scale in deploying larger vessels. In order to quantify economies of scale, this paper uses the liner service cash flow model. A novelty in the model is the inclusion of +6000-20-foot Equivalent Unit (TEU) vessels and the distinction in costs between single and twin propeller units on ships. The results illustrate that scale economies have been – and will continue to be – the driving force behind the deployment of larger container vessels. The paper then assesses the link between ship size and operations, given current discussions about the increase in container vessel scale. It is found that (a) ship size and operations are linked; (b) optimal ship size depends on transport segment (deep-sea vs. short-sea shipping, SSS), terminal type (transhipment terminals vs. other terminals), trade lane (East-West vs. North-South trades) and technology; and (c) a ship optimal for one trade can be suboptimal for another.  相似文献   

11.
文章结合2013年最新出台的《广西壮族自治区船闸管理办法》,以及近期国家关于行政审批制度改革的相关精神和要求,对集装箱班轮优先过闸条款进行探索和研究,分析了集装箱班轮优先过闸面临的主要问题,提出了一套新的市场管理模式,即主要采取企业公开"承诺制",加上"定期、定港、定线、不定船"的管理模式,通过实施"宽进严管",以期在简政放权的同时,能够充分发挥市场作用,促进企业自律,推动内河集装箱班轮运输市场的健康发展。  相似文献   

12.
This paper considers the maritime container assignment problem in a market setting with two competing firms. Given a series of known, exogenous demands for service between pairs of ports, each company is free to design liner services connecting a subset of the ports and demand, subject to the size of their fleets and the potential for profit. The model is designed as a three-stage complete information game: in the first stage, the firms simultaneously invest in their fleet; in the second stage, they individually design their services and solve the route assignment problem with respect to the transport demand they expect to serve, given the fleet determined in the first stage; in the final stage, the firms compete in terms of freight rates on each origin–destination movement. The game is solved by backward induction. Numerical solutions are provided to characterize the equilibria of the game.  相似文献   

13.
Reversing port rotation directions of ship routes is a practical alteration of container liner shipping networks. The port rotation directions of ship routes not only affect the transit time of containers, as has been recognized by the literature, but also the shipping capacity and transshipment cost. This paper aims to obtain the optimal port rotation directions that minimize the generalized network-wide cost including transshipment cost, slot-purchasing cost and inventory cost. A mixed-integer linear programming model is proposed for the optimal port rotation direction optimization problem and it nests a minimum cost multi-commodity network flow model. The proposed model is applied to a liner shipping network operated by a global liner shipping company. Results demonstrate that real-case instances could be efficiently solved and significant cost reductions are gained by optimization of port rotation directions.  相似文献   

14.
Boundedly rational user equilibria (BRUE) represent traffic flow distribution patterns where travellers can take any route whose travel cost is within an ‘indifference band’ of the shortest path cost. Those traffic flow patterns satisfying the above condition constitute a set, named the BRUE solution set. It is important to obtain all the BRUE flow patterns, because it can help predict the variation of the link flow pattern in a traffic network under the boundedly rational behavior assumption. However, the methodology of constructing the BRUE set has been lacking in the established literature. This paper fills the gap by constructing the BRUE solution set on traffic networks with fixed demands. After defining ε-BRUE, where ε is the indifference band for the perceived travel cost, we formulate the ε-BRUE problem as a nonlinear complementarity problem (NCP), so that a BRUE solution can be obtained by solving a BRUE–NCP formulation. To obtain the BRUE solution set encompassing all BRUE flow patterns, we propose a methodology of generating acceptable path set which may be utilized under the boundedly rational behavior assumption. We show that with the increase of the indifference band, the acceptable path set that contains boundedly rational equilibrium flows will be augmented, and the critical values of indifference band to augment these path sets can be identified by solving a family of mathematical programs with equilibrium constraints (MPEC) sequentially. The BRUE solution set can then be obtained by assigning all traffic demands to the acceptable path set. Various numerical examples are given to illustrate our findings.  相似文献   

15.
Tactical planning models for liner shipping problems such as network design and fleet deployment usually minimize the total cost or maximize the total profit subject to constraints including ship availability, service frequency, ship capacity, and transshipment. Most models in the literature do not consider slot-purchasing, multi-type containers, empty container repositioning, or ship repositioning, and they formulate the numbers of containers to transport as continuous variables. This paper develops a mixed-integer linear programming model that captures all these elements. It further examines from the theoretical point of view the additional computational burden introduced by incorporating these elements in the planning model. Extensive numerical experiments are conducted to evaluate the effects of the elements on tactical planning decisions. Results demonstrate that slot-purchasing and empty container repositioning have the largest impact on tactical planning decisions and relaxing the numbers of containers as continuous variables has little impact on the decisions.  相似文献   

16.
This paper examines a practical tactical liner ship route schedule design problem, which is the determination of the arrival and departure time at each port of call on the ship route. When designing the schedule, the availability of each port in a week, i.e., port time window, is incorporated. As a result, the designed schedule can be applied in practice without or with only minimum revisions. This problem is formulated as a mixed-integer nonlinear nonconvex optimization model. In view of the problem structure, an efficient holistic solution approach is proposed to obtain global optimal solution. The proposed solution method is applied to a trans-Atlantic ship route. The results demonstrate that the port time windows, port handling efficiency, bunker price and unit inventory cost all affect the total cost of a ship route, the optimal number of ships to deploy, and the optimal schedule.  相似文献   

17.
The proliferation of hub-and-spoke operations in maritime container transportation has resulted in the widespread consolidation of traffic flows. Utilising liner shipping network configurations, this paper assesses the impact of freight traffic consolidation in the container port industry by exploring the spatial pattern of traffic flow movements and identifying the variety of roles that container ports play within this context. On the basis of the network concept, the spatial inequality of freight traffic consolidation is determined by the density and direction of all meaningful connections (i.e. significant flows) identified by applying Multiple Linkage Analysis (MLA) to an initial traffic flow matrix.The effectiveness of the chosen methodology is tested empirically using a sample comprising the 18 major container ports in East Asia, together with another 21 important container ports located on the East–West trading route. Based on this sample network, the spatial structure of traffic flow consolidation reveals the nature and structure of hub-and-spoke operations within a port system, the relative hub-dependence of ports, the variety of roles which individual ports play within the overall structure of inter-port interactions and the hierarchical configuration of the port industry structure. The paper concludes that MLA offers new insights into the distributional inequality of traffic flows, the spatial and economic interactions between ports and the extent to which hinterlands overlap. Furthermore, the analysis clearly shows that inter-port relationships can no longer be evaluated as isolated phenomena; any change in a specific port’s competitiveness will directly impact upon the structure of the whole maritime transportation system. Port authorities and terminal operators will need, therefore, to carefully analyse and disentangle specific inter-port relationships in order to provide the most appropriate basis for their decision making.  相似文献   

18.
A recently proposed frequency-based maritime container assignment model (Bell et al., 2011) seeks an assignment of full and empty containers to paths that minimises expected container travel time, whereas containers are in practice more likely to be assigned to minimise expected cost. A cost-based container assignment model is proposed here. It is assumed that routes and service frequencies are given so ship operating costs are also fixed. The objective is to assign containers to routes to minimise container handling costs, container rental and inventory costs. The constraints in the model are extended to include route as well as port capacities. It is shown that the problem remains a linear program. A numerical example is presented to illustrate the properties of the model. The paper concludes by considering the many applications of the proposed maritime container assignment model.  相似文献   

19.
20.
Efficient port services are prerequisites for competitive and sustainable maritime transports. This paper makes advances in studying the determinants of the time that ships spend in port and the associated emissions to air. We estimate a production model for cargo handling based on a unique dataset containing each port of call at the largest container terminals in Norway in 2014. In turn, we use auxiliary engine emission factors to estimate particulate matter and nitrogen oxide emissions from ships at berth, to determine how the corresponding damage costs of air pollution vary with container throughput, location, and terminal investments. We find that Norwegian container terminals operate under increasing returns to density. Small ships that unload few containers are far from reaping economies of density, leading to high marginal time requirements for container handling and consequently high marginal external costs. From a Pigouvian taxation perspective, port charges should therefore be regressive in the number of containers handled. Moreover, we find that the external costs of maritime transports are severely understated when port operations are ignored. Our model allows determining the marginal productivities of port facilities. Thereby, it is instrumental in designing port charges that are diversified according to the quantity of containers handled and the service quality (i.e., the speed of handling operations). Regarding contextual factors, we find that establishing high-frequent liner services improves the ship working rate, while simultaneous calls at a terminal impede productivity. The type of container (loading/unloading; empty/laden) also appears to influence the duration of ship working.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号