首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditionally, the parking choice/option is considered to be an important factor in only in the mode choice component of a four-stage travel demand modelling system. However, travel demand modelling has been undergoing a paradigm shift from the traditional trip-based approach to an activity-based approach. The activity-based approach is intended to capture the influences of different policy variables at various stages of activity-travel decision making processes. Parking is a key policy variable that captures land use and transportation interactions in urban areas. It is important that the influences of parking choice on activity scheduling behaviour be identified fully. This paper investigates this issue using a sample data set collected in Montreal, Canada. Parking type choice and activity scheduling decision (start time choice) are modelled jointly in order to identify the effects of parking type choice on activity scheduling behaviour. Empirical investigation gives strong evidence that parking type choice influences activity scheduling process. The empirical findings of this investigation challenge the validity of the traditional conception which considers parking choice as exogenous variable only in the mode choice component of travel demand models.  相似文献   

2.
An understanding of the interaction between individuals’ activities and travel choice behaviour plays an important role in long-term transit service planning. In this paper, an activity-based network equilibrium model for scheduling daily activity-travel patterns (DATPs) in multi-modal transit networks under uncertainty is presented. In the proposed model, the DATP choice problem is transformed into a static traffic assignment problem by constructing a new super-network platform. With the use of the new super-network platform, individuals’ activity and travel choices such as time and space coordination, activity location, activity sequence and duration, and route/mode choices, can be simultaneously considered. In order to capture the stochastic characteristics of different activities, activity utilities are assumed in this study to be time-dependent and stochastic in relation to the activity types. A concept of DATP budget utility is proposed for modelling the uncertainty of activity utility. An efficient solution algorithm without prior enumeration of DATPs is developed for solving the DATP scheduling problem in multi-modal transit networks. Numerical examples are used to illustrate the application of the proposed model and the solution algorithm.  相似文献   

3.
This paper provides an overview of the transit operational planning process with an emphasis on certain aspects of new methodologies in scheduling. The transit scheduling system usually consists of three interelated components: (1) creation of timetables; (2) scheduling vehicles to trips; and (3) assignment of drivers. These three components are described, but with a focus on the first component because of its importance from the user's perspective. The design of a transit timetable is discussed from both a practical and an analytical viewpoint. A methodology is presented on the construction of alternative computerized public timetables, based on procedures that improve the correspondence of vehicle departure times with passenger demand. The vehicle scheduling procedure is viewed through the minimization of the number of vehicles required to carry out a fixed or variable timetable. Finally, different approaches to the crew assignment component are briefly discussed. The overview and methodologies presented in the paper suggest that most scheduling tasks can be performed automatically or in a conversational man-computer mode. The adoption of new scheduling procedures will undoubtedly increase the efficiency of each of the three components of the transit scheduling system.  相似文献   

4.
The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000–2004, with 2004 being of particular interest because the Copenhagen Metro became operational in autumn 2002. We observed that forecasts from the demand sub-models agree well with the data from the 2000 national travel survey, with the mode choice forecasts in particular being a good match with the observed modal split. The results of the 2000 car assignment model matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10–50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade the model’s base trip matrices. Second, a dialog between researchers and the Ministry of Transport has been initiated to discuss the need to upgrade the Copenhagen model, e.g. a switching to an activity-based paradigm and improving assignment procedures.  相似文献   

5.
The timing of commuting trips made during morning and evening peaks has typically been investigated using Vickrey’s bottleneck model. However, in the conventional trip-based approach, the decisions that commuters make during the day about their activity schedules and time use are not explicitly considered. This study extends the bottleneck model to address the scheduling problem of commuters’ morning home-to-work and evening work-to-home journeys by using an activity-based approach. A day-long activity-travel scheduling model is proposed for the simultaneous determination of departure times for morning and evening commutes, together with allocations of time during the day among travel and activities undertaken at home or at the workplace. The proposed model maximizes the total net utility of the home-based tour, which is the difference between the benefits derived from participating in activities and the disutility incurred by travel between activity locations. The properties of the model solution are analytically explored and compared with the conventional bottleneck model for a special case with constant marginal-activity utility. For the case with linear marginal-activity utility, we develop a heuristic procedure to seek the equilibrium scheduling solution. We also explore the effects of marginal-work utility (or the employees’ average wage level) and of flexible work-hour schemes on the scheduling problem in relation to the morning and evening commuting tours.  相似文献   

6.
This paper studies the properties and performance of a new measure of accessibility, called the activity-based accessibility (ABA) measure, and compares it to traditional measures of accessibility, including isochrone, gravity and utility-based measures. The novel aspect of the ABA is that it measures accessibility to all activities in which an individual engages, incorporating constraints such as scheduling, and travel characteristics such as trip chaining. The ABA is generated from the day activity schedule (DAS) model system, an integrated system based on the concept of an activity pattern, which identifies the sequence and tour structure among all the activities and trips taken by an individual during a day. A byproduct is an individual’s expected maximum utility over the choices of all available activity patterns, and from this the ABA is derived. The ABA is related to the logsum accessibility measures frequently derived from destination and mode discrete choice models. The key difference is that it is generated not by examining a particular trip, but by examining all trips and activities throughout the day.A case study using data from Portland, Oregon, demonstrates the rich picture of accessibility made available by use of the ABA, and highlights differences between the ABA and more traditional measures of accessibility. The ABA is successful in (a) capturing taste heterogeneity across individuals (not possible with aggregate accessibility measures), (b) combining different types of trips into a unified measure of accessibility (not possible with trip-based measures), (c) reflecting the impact of scheduling and trip chaining on accessibility (not possible with trip-based measures), and (d) quantifying differing accessibility impacts on important segments of the population such as unemployed and zero auto households (not possible with aggregate measures, and limited with trip-based measures).  相似文献   

7.
This paper presents a joint trivariate discrete-continuous-continuous model for commuters’ mode choice, work start time and work duration. The model is designed to capture correlations among random components influencing these decisions. For empirical investigation, the model is estimated using a data set collected in the Greater Toronto Area (GTA) in 2001. Considering the fact that work duration involves medium- to long-term decision making compared to short-term activity scheduling decisions, work duration is considered endogenous to work start time decisions. The empirical model reveals many behavioral details of commuters’ mode choice, work start time and duration decisions. The primary objective of the model is to predict workers’ work schedules according to mode choice, which is considered a skeletal activity schedule in activity-based travel demand models. However, the empirical model reveals many behavioral details of workers’ mode choices and work scheduling. Independent application of the model for travel demand management policy evaluations is also promising, as it provides better value in terms of travel time estimates.  相似文献   

8.
Empirical studies have shown that demand for multimodal transport systems is highly correlated with activity schedules of individuals. Nonetheless, existing analytical equilibrium models of multimodal systems have only considered trip-based demand. We propose a new market equilibrium model that is sensitive to traveler activity schedules and system capacities. The model is based on a constrained mixed logit model of activity schedule choice, where each schedule in the choice set is generated with a multimodal extension of the household activity pattern problem. The extension explicitly accounts for both passenger choices of activity participation and multimodal choices like public transit, walking, and vehicle parking. The market equilibrium is achieved with Lagrangian relaxation to determine the optimal dual price of the capacity constraint, and a method of successive averages with column generation finds an efficient choice set of activity schedules to assign flows over the dynamic network load capacities. An example illustrates the model and algorithm, effects similar to Vickrey’s morning commute model can be observed as a special case. A case study of the Oakville Go Transit station access “last mile” problem in the Greater Toronto Area is conducted with 166 survey samples reflecting 3680 individuals. Results suggest that a $10 fixed parking fee at Oakville station would lead to a reduction of access auto share from 54.8% to 49.5%, an increase in access transit share from 20.7% to 25.9%, and a disutility increase of 11% for the of single-activity residents of Oakville.  相似文献   

9.
The paper presents a modeling framework for dynamic activity scheduling. The modeling framework considers random utility maximization (RUM) assumption for its components in order to capture the joint activity type, location and continuous time expenditure choice tradeoffs over the course of the day. The dynamics of activity scheduling process are modeled by considering the history of activity participation as well as changes in time budget availability over the day. For empirical application, the model is estimated for weekend activity scheduling using a dataset (CHASE) collected in Toronto in 2002–2003. The data set classifies activities into nine general categories. For the empirical model of a 24-h weekend activity scheduling, only activity type and time expenditure choices are considered. The estimated empirical model captures many behavioral details and gives a high degree of fit to the observed weekend scheduling patterns. Some examples of such behavioral details are the effects of time of the day on activity type choice for scheduling and on the corresponding time expenditure; the effects of travel time requirements on activity type choice for scheduling and on the corresponding time expenditure, etc. Among many other findings, the empirical model reveals that on the weekend the utility of scheduling Recreational activities for later in the day and over a longer duration of time is high. It also reveals that on the weekend, Social activity scheduling is not affected by travel time requirements, but longer travel time requirements typically lead to longer-duration social activities.  相似文献   

10.
This paper focuses on developing mathematical optimization models for the train timetabling problem with respect to dynamic travel demand and capacity constraints. The train scheduling models presented in this paper aim to minimize passenger waiting times at public transit terminals. Linear and non-linear formulations of the problem are presented. The non-linear formulation is then improved through introducing service frequency variables. Heuristic rules are suggested and embedded in the improved non-linear formulation to reduce the computational time effort needed to find the upper bound. The effectiveness of the proposed train timetabling models is illustrated through the application to an underground urban rail line in the city of Tehran. The results demonstrate the effectiveness of the proposed demand-oriented train timetabling models, in terms of decreasing passenger waiting times. Compared to the baseline and regular timetables, total waiting time is reduced by 6.36% and 10.55% respectively, through the proposed mathematical optimization models.  相似文献   

11.
Vehicle fleet routing and timetable setting are essential to the enhancement of an inter-city bus carrier’s operating cost, profit, level of service and competitiveness in the market. In past research the average passenger demand has usually served as input in the production of the final fleet routes and timetables, meaning that stochastic disturbances arising from variations in daily passenger demand in actual operations are neglected. To incorporate the stochastic disturbances of daily passenger demands that occur in actual operations, in this research, we established a stochastic-demand scheduling model. We applied a simulation technique, coupled with link-based and path-based routing strategies, to develop two heuristic algorithms to solve the model. To evaluate the performance of the proposed model and the two solution algorithms, we developed an evaluation method. The test results, regarding a major Taiwan inter-city bus operation, were good, showing that the model and the solution algorithms could be useful in practice.  相似文献   

12.
This work is originally motived by the re-planning of a bus network timetable. The existing timetable with even headways for the network is generated using line by line timetabling approach without considering the interactions between lines. Decision-makers (i.e., schedulers) intend to synchronize vehicle timetable of lines at transfer nodes to facilitate passenger transfers while being concerned with the impacts of re-designed timetable on the regularity of existing timetable and the accustomed trip plans of passengers. Regarding this situation, we investigate a multi-objective re-synchronizing of bus timetable (MSBT) problem, which is characterized by headway-sensitive passenger demand, uneven headways, service regularity, flexible synchronization and involvement of existing bus timetable. A multi-objective optimization model for the MSBT is proposed to make a trade-off between the total number of passengers benefited by smooth transfers and the maximal deviation from the departure times of the existing timetable. By clarifying the mathematical properties and solution space of the model, we prove that the MSBT problem is NP-hard, and its Pareto-optimal front is non-convex. Therefore, we design a non-dominated sorting genetic (NSGA-II) based algorithm to solve this problem. Numerical experiments show that the designed algorithm, compared with enumeration method, can generate high-quality Pareto solutions within reasonable times. We also find that the timetable allowing larger flexibility of headways can obtain more and better Pareto-optimal solutions, which can provide decision-makers more choice.  相似文献   

13.
We propose a new type of timetable that would combine both the regularity of the cyclic timetables and the flexibility of the non-cyclic ones. In order to do so, several combinations of the two timetables are considered. The regularity is incorporated in their design and the flexibility is evaluated using the passenger satisfaction (in monetary units). Each of the tested timetables is constructed using the Passenger Centric Train Timetabling Problem (PCTTP), that is solved using a simulated annealing heuristic. Note that the PCTTP, unlike the traditional Train Timetabling Problem (TTP), does not take into account the conflicts among trains. The aim of the PCTTP is to design such timetables that the passengers’ satisfaction is maximized and it remains the aim of the TTP to remove any potential conflicts. The performance of each of the considered timetables is assessed on the real network of Israeli Railways. The results of the case study show that our proposed hybrid cyclic timetable can provide the benefits of the cyclic and the non-cyclic timetable simultaneously. This timetable consists of 75% of cyclic trains (securing the regularity of the service) and of 25% of non-cyclic trains (deployed as supplementary trains during the peak hours and capturing the demand fluctuation). The level of the passenger satisfaction of the hybrid cyclic timetable is similar to the level of the non-cyclic one, which has about 18.5% of improvement as compared to the purely cyclic one.  相似文献   

14.
The present paper deals with timetable optimisation from the perspective of minimising the waiting time experienced by passengers when transferring either to or from a bus. Due to its inherent complexity, this bi-level minimisation problem is extremely difficult to solve mathematically, since timetable optimisation is a non-linear non-convex mixed integer problem, with passenger flows defined by the route choice model, whereas the route choice model is a non-linear non-continuous mapping of the timetable. Therefore, a heuristic solution approach is developed in this paper, based on the idea of varying and optimising the offset of the bus lines. Varying the offset for a bus line impacts the waiting time passengers experience at any transfer stop on the bus line.In the bi-level timetable optimisation problem, the lower level is a transit assignment calculation yielding passengers’ route choice. This is used as weight when minimising waiting time by applying a Tabu Search algorithm to adapt the offset values for bus lines. The updated timetable then serves as input in the following transit assignment calculation. The process continues until convergence.The heuristic solution approach was applied on the large-scale public transport network in Denmark. The timetable optimisation approach yielded a yearly reduction in weighted waiting time equivalent to approximately 45 million Danish kroner (9 million USD).  相似文献   

15.
The aim of this paper is to analyze and to improve the current planning process of the passenger railway service in light of the recent railway market changes. In order to do so, we introduce the Passenger Centric Train Timetabling Problem. The originality of our approach is that we account for the passenger satisfaction in the design of the timetable. We consider both types of timetable(s): cyclic and non-cyclic. The problem is modeled as a Mixed Integer Linear Programming (MILP) problem with an objective of maximizing the train operating company’s profit while maintaining ε level of passenger satisfaction. The model does not take into account conflicts between trains and does not adjust dwell times at stopping stations among the lines. By solving the model for various values of ε, the approximated Pareto frontier is constructed. The analysis, based on an experiment using realistic data, shows that an improvement of passenger satisfaction while maintaining a low profit loss for the railway company can be achieved. A sensitivity analysis on passenger congestion illustrates a quantitative evidence that the non-cyclic timetables can account better for high density demand in comparison to cyclic timetables.  相似文献   

16.
Using the schedule‐based approach, in which scheduled timetables are used to describe the movement of vehicles, a dynamic transit assignment model is formulated. Passengers are assumed to travel on a path with minimum generalized cost that consists of four components: in‐vehicle time; waiting time; walking time; and a time penalty for each line change. A specially developed branch and bound algorithm is used to generate the time‐dependent minimum path. The assignment procedure is conducted over a period in which both passenger demand and train headway are varying. This paper presents an overview of the research that has been carried out by the authors to develop the schedule‐based transit assignment model, and offers perspectives for future research.  相似文献   

17.
ABSTRACT

The paper presents a critical review of the methodological approaches used in tour-based mode choice models within the activity-based modelling frameworks. Various components of the activity-based models, such as activity type choice, activity location choice, and activity duration have already matured significantly. However, the mode choice component is often simplified in many ways. Both trip-based and tour-based approaches are used in many cases. However, the tour-based approach is considered to be the most relevant to the activity-based modelling framework. This paper presents a synthesis of the strengths and weaknesses of existing tour-based mode choice models. The previous studies on tour-based mode choice models are grouped into seven categories, ranging from simplified main tour mode to complex dynamic discrete choice models. Besides, challenges with data-hungry models, simulation-based models and static models are discussed elaborately. In conclusion, it proposes a few methodological suggestions for researchers and practitioners for finding an appropriate mode choice modelling framework for activity-based models. In addition, the paper also provides a guideline on how to incorporate automated vehicles and Mobility-as-a-Service within the framework of tour-based mode choice models.  相似文献   

18.
With the increasing demand for railway transportation infrastructure managers need improved automatic timetabling tools that provide feasible timetables with enhanced performance in short computation times. This paper proposes a hierarchical framework for timetable design which combines a microscopic and a macroscopic model of the network. The framework performs an iterative adjustment of train running and minimum headway times until a feasible and stable timetable has been generated at the microscopic level. The macroscopic model optimizes a trade-off between minimal travel times and maximal robustness using an Integer Linear Programming formulation which includes a measure for delay recovery computed by an integrated delay propagation model in a Monte Carlo setting. The application to an area of the Dutch railway network shows the ability of the approach to automatically compute a feasible, stable and robust timetable. Practitioners can use this approach both for effective timetabling and post-evaluation of existing timetables.  相似文献   

19.
We present an integrated activity-based discrete choice model system of an individual’s activity and travel schedule, for forecasting urban passenger travel demand. A prototype demonstrates the system concept using a 1991 Boston travel survey and transportation system level of service data. The model system represents a person’s choice of activities and associated travel as an activity pattern overarching a set of tours. A tour is defined as the travel from home to one or more activity locations and back home again. The activity pattern consists of important decisions that provide overall structure for the day’s activities and travel. In the prototype the activity pattern includes (a) the primary – most important – activity of the day, with one alternative being to remain at home for all the day’s activities; (b) the type of tour for the primary activity, including the number, purpose and sequence of activity stops; and (c) the number and purpose of secondary – additional – tours. Tour models include the choice of time of day, destination and mode of travel, and are conditioned by the choice of activity pattern. The choice of activity pattern is influenced by the expected maximum utility derived from the available tour alternatives.  相似文献   

20.
Automatically generating timetables has been an active research area for some time, but the application of this research in practice has been limited. We believe this is due to two reasons. Firstly, some of the models in the literature impose artificial upper bounds on time supplements. This causes a high risk of generating infeasibilities. Secondly, some models that leave out these upper bounds often generate solutions that contain some very large time supplements because these supplements are not penalised in the objective function. The reason is that these objective functions often do not completely correspond to the true goal of a timetable. We solve both problems by minimising our objective function: total passenger travel time, expected in practice. Since this function evaluates and indirectly steers all time related decision variables in the system, we do not need to further restrict the ranges of any of these variables. As a result, our model does not suffer from infeasibilities generated by such artificial upper bounds for supplements.Furthermore, some measures are taken to significantly speed up the solver times of our model. These combined features result in our model being solved more quickly than previous models. As a result, our method can be used for timetabling in practice. We demonstrate our claims by optimising, in about two hours only, the timetable of all 196 hourly passenger trains in Belgium. Assuming primary delay-distributions with an average of 2% on the minima of each activity, the optimised timetable reduces expected passenger time in practice, as evaluated on the macroscopic level, by 3.8% during peak hours. This paper demonstrates that we added two important missing steps to make cyclic timetabling for passengers really useable in practice: (i) the addition of the objective function of expected passenger time in practice and (ii) the reduction of computation time by addition of well chosen additional constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号