首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The evolution of dissolved organic matter (DOM) in a non-axenic batch culture of the marine diatom Thalassiosira tumida was studied by hydrophobic fractionation during a three month experiment. DOM was fractionated with XAD-2 resin into hydrophobic (acid and neutral, “humic”) and hydrophilic fractions. The combined amino acid contents of unfractionated filtered seawater, XAD-fractions and particulate material were determined during the growth, stationary and degradation phases of the culture, and variations related to changes in dissolved organic nitrogen (DON) in XAD-fractions, dissolved inorganic nitrogen, algal and bacterial biomass. XAD-fractionation enabled the discrimination of simultaneously ocurring release and uptake of organic nitrogenous compounds: During the diatom growth there was a net increase of tolal DON concentrations, which was mostly accounted for by the hydrophilic fraction. A concurrent heterotrophic uptake of combined amino acids and other non-amino acid organic nitrogen was discernible by the decrease of their concentrations in the hydrophobic fractions. In the stationary phase, during the prevailing net consumption of total DON, the production of algal exudates could be detected in the hydrophobic fractions, while uptake mainly involved non-amino acid organic nitrogen from the hydrophilic fraction. During the degradation phase, after two months part of the particulate amino acid pool was transformed into hydrophilic DON, which in contrast to the stationary phase, was not adequate for supporting sustained bacterial growth. This suggests that the generation of recalcitrant substances may begin in the hydrophilic fraction of DOM. A slight increase of the hydrophobic acid fraction was indicative of the incipient formation of humic substances. XAD-2 was able to adsorb substances from fast changing DOM pools and thus should be a useful tool in studies concerned with phytoplankton and bacterial dynamics.  相似文献   

2.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

3.
Net in situ production and export of dissolved organic carbon (DOC) and nitrogen (DON) have been studied in shelf waters off the Ría de Vigo (NW Spain), as part of a comprehensive hydrographic survey carried out from September 1994 to September 1995 with a fortnight periodicity. DOC and DON correlated well (r=+0.78), the slope of the regression line being 12.0±0.7 mol-C mol-N−1, about twice the Redfieldian slope of particulate organic matter, 6.5±0.2 mol-C mol-N−1 (r=+0.95). Labile DOC and DON accumulated in the upper 50 m during the upwelling season (March–September), mainly after prolonged periods of wind relaxation, when horizontal flows were reduced. This labile material represented 50% and 35% of the total (dissolved+particulate) organic carbon and nitrogen susceptible of microbial utilisation, which assert the key contribution of dissolved organic matter (DOM) to the export of new primary production in the NW Iberian upwelling system. This surface excess in shelf waters appeared to be formed into the highly productive Ría de Vigo (a large coastal indentation) at net rates of 4.4 μM-C d−1 and 1.3 μM-C d−1 in the inner and outer segments of the embayment respectively, and subsequently exported to the shelf. Once in the shelf, simple dilution with the inert DOM pool of recently upwelled Eastern North Atlantic Central Water (ENACW) occurred. Eventually, the DOM excess produced during the upwelling season is exported to the adjacent open ocean waters by the coastal circulation. Conversely, during the unproductive downwelling season (October–February), the lowest DOC and DON levels were recorded and export was prevented by the characteristic downwelling front associated to the seasonal poleward slope current.  相似文献   

4.
Continuous measurements of the surface water CO2 partial pressure (pCO2) and the chlorophyll a fluorescence were performed in the Baltic Sea using a fully automated measurement system deployed on a cargo ship. The ship commuted regularly at two day intervals between the Mecklenburg Bight (Luebeck) and the Gulf of Finland (Helsinki). The pCO2 data collected during June 2003 and September 2004 were used to identify biological production events such as the spring bloom and the midsummer cyanobacteria bloom in five different sub-regions. To quantify the net biomass production, the decrease of the total CO2, NCT (normalized to a uniform alkalinity), during the production periods was calculated using the pCO2, temperature and salinity records and the mean alkalinity. Taking into account the CO2 air/sea exchange and the formation of dissolved organic carbon, a simple mass balance yielded the net production of particulate organic carbon which represents the total biomass. The chlorophyll a concentrations obtained from the fluorescence data showed peaks that in most cases coincided with the production maxima and thus supported the interpretation of the pCO2 data. The production during both the spring bloom (2004) and the midsummer nitrogen fixation period (2003) increased by a factor of about three from the southwest to the northeast. For the spring bloom our estimates were significantly higher than those based on the winter nutrient supply and Redfield C / N and C / P ratios. This indicated the existence of additional nutrient sources such as dissolved organic nitrogen, early nitrogen fixation and preferential P mineralization. Midsummer NCT minima were observed only in 2003 and used to quantify the nitrogen fixation activity and to characterize its interannual variability.  相似文献   

5.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

6.
We studied the nutrient input to the Gulf of Finland via River Neva, the largest river discharging freshwater to the Baltic Sea, and characterised the isotopic signatures (15N, 18O, 13C) in dissolved and particulate substances (NO3, PON, POC, DIC) in the River Neva over two seasonal cycles, as well as in samples from St. Petersburg wastewater treatment plants (NO3, NH4+, PON, POC). These riverine and municipal discharges account for 40% of terrestrial inorganic N loading to the Gulf of Finland, representing annually 7% of the total nitrogen pool in the water mass of the whole Gulf. To describe and evaluate the modification of these isotopic signals along a Gulf of Finland transect towards the Baltic Proper, two cruises were arranged, one in late spring after the annual maximum in River Neva runoff, and one in autumn, in the late phase of the annual growth season.River Neva nitrate signatures of 15N and 18O indicated major agricultural fertilizer origin of nitrogen, and the isotopic composition was clearly lighter (δ15N-NO3 mean of 2.4‰ air) than previously measured from more southern rivers discharging into the Baltic Sea. Because of the light composition of the River Neva N source, close to the 15N signatures of the open Gulf, as well as of the efficient depletion of the inorganic load already in the innermost estuary, straightforward end-member tracer analysis of the transport of N in the basin is problematic. St. Petersburg wastewater ammonium showed, however, high δ15N values (ca. 13‰), which gives a first estimate of 5.8‰ for δ15N of the easternmost estuarine total inorganic N source. The available sediment data from the basin (δ15N 6 to 8‰) somewhat exceeds the average source signature. This emphasizes the significance of biological transformation processes, most importantly assimilation of inorganic nitrogen, food web interactions and denitrification, which all involve isotopic fractionation, for the mass balance models describing the dynamics of the sources and sinks of the N cycle of the basin.  相似文献   

7.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

8.
This paper presents results obtained with MIRO&CO-3D, a biogeochemical model dedicated to the study of eutrophication and applied to the Channel and Southern Bight of the North Sea (48.5°N–52.5°N). The model results from coupling of the COHERENS-3D hydrodynamic model and the biogeochemical model MIRO, which was previously calibrated in a multi-box implementation. MIRO&CO-3D is run to simulate the annual cycle of inorganic and organic carbon and nutrients (nitrogen, phosphorus and silica), phytoplankton (diatoms, nanoflagellates and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) with realistic forcing (meteorological conditions and river loads) for the period 1991–2003. Model validation is first shown by comparing time series of model concentrations of nutrients, chlorophyll a, diatom and Phaeocystis with in situ data from station 330 (51°26.00′N, 2°48.50′E) located in the centre of the Belgian coastal zone. This comparison shows the model's ability to represent the seasonal dynamics of nutrients and phytoplankton in Belgian waters. However the model fails to simulate correctly the dissolved silica cycle, especially during the beginning of spring, due to the late onset (in the model) of the early spring diatom bloom. As a general trend the chlorophyll a spring maximum is underestimated in simulations. A comparison between the seasonal average of surface winter nutrients and spring chlorophyll a concentrations simulated with in situ data for different stations is used to assess the accuracy of the simulated spatial distribution. At a seasonal scale, the spatial distribution of surface winter nutrients is in general well reproduced by the model with nevertheless a small overestimation for a few stations close to the Rhine/Meuse mouth and a tendency to underestimation in the coastal zone from Belgium to France. PO4 was simulated best; silica was simulated with less success. Spring chlorophyll a concentration is in general underestimated by the model. The accuracy of the simulated phytoplankton spatial distribution is further evaluated by comparing simulated surface chlorophyll a with that derived from the satellite sensor MERIS for the year 2003. Reasonable agreement is found between simulated and satellite-derived regions of high chlorophyll a with nevertheless discrepancies close to the boundaries.  相似文献   

9.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

10.
Organic carbon budget for the Gulf of Bothnia   总被引:1,自引:0,他引:1  
We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.  相似文献   

11.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

12.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

13.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

14.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

15.
This study presents oceanic distributions of stable isotopes (δ18O of water and δ13C of ΣCO2) and CFC-12 from samples collected during the CIVA1 cruise (February/March 1993), across the Southern Ocean, along a meridian section at 30°E, from South Africa (44°S) to Antarctica (70°S). The isotopic measurements show important variations between the subantarctic surface waters with low δ18O–high δ13C values and the antarctic surface waters with very low δ18O–low δ13C values. The surface distributions of δ13C values follow the major frontal oceanic structures; the vertical distribution shows the progressive upwelling from the subantarctic zone to the antarctic divergence of 13C-depleted CO2 derived from remineralization of organic matter. Along the Antarctic continental shelf, between 2500 and 4000 m, a core of water with δ18O values close to −0.1‰ is associated with a relative maximum in CFC-12 concentration, although this core is not detected by its temperature and salinity parameters. This water mass, which corresponds to recently formed deep water, may originate from the eastward extension of the Weddell gyre or from bottom waters coming from the East and formed near Prydz Bay.  相似文献   

16.
Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July–August 2004. Surface bacterial concentrations averaged 6.7 × 105 cells mL− 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL− 1. There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea.Size-fractionated bacterial production, as measured by 3H–leucine uptake, varied from 76 to 416 ng C L− 1 h− 1. The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to < 20% at an offshore marine site, and the relative importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea.Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or below the integrated primary production rates. Consistent with these results, PCO2 measurements showed surface water supersaturation in the river (mean of 146% of air equilibrium values) and subsaturation or near-saturation in the coastal sea. These results show a well-developed microbial food web in the Mackenzie River system that will likely convert tundra carbon to atmospheric CO2 at increasing rates as the arctic climate continues to warm.  相似文献   

17.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   

18.
Observations of a winter upwelling event off Western Iberia shelf/slope in the area of influence of the Western Iberia Buoyant Plume (WIBP) were conducted in February 2000. Spatial patterns and time evolution of the chlorophyll-a (chl-a) biomass are analysed, based on in situ and satellite data. SeaWiFS-derived chl-a concentration L2 products were used to track the chlorophyll front and estimate its westward migration velocity (maximum up to 29 km day−1), as well as to characterize the frontal system and its evolution. A method associating the type of spectral signature of a pixel to the fraction of chlorophyll probed by SeaWiFS enabled the estimation of the chl-a biomass within error intervals. High chlorophyll concentrations (for wintertime) were observed over the shelf and slope, up to large distances to the coast. Due to the WIBP, a shallow Ekman layer developed, being nearly coincident with the stratified upper meters. The transport comprised westward advection and stretching of the plume, with little entrainment with the offshore deep mixed layer waters. The relative enlargement of the total area of the Inside-Front Zone (IFZ) during the upwelling event was roughly accompanied by the maintenance of the average biomass per unit of area, considering the water column up to depths of interest. This suggests that there was a net increase of chl-a biomass inside the water column associated with the IFZ, roughly proportional to the increase in the IFZ area. Retention of phytoplankton in the shallow stratified nutrient-rich waters of the WIBP was a key factor for this increase in chl-a biomass.  相似文献   

19.
Methane release and coastal environment in the East Siberian Arctic shelf   总被引:1,自引:0,他引:1  
In this paper we present 2 years of data obtained during the late summer period (September 2003 and September 2004) for the East Siberian Arctic shelf (ESAS). According to our data, the surface layer of shelf water was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm, pointing to the rivers as a strong source of dissolved methane which comes from watersheds which are underlain with permafrost. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water at a few sites suggest that the bottom layer is somehow affected by near-bottom sources. The net flux of methane from this area of the East Siberian Arctic shelf can reach up to 13.7 × 104 g CH4 km− 2 from plume areas during the period of ice free water, and thus is in the upper range of the estimated global marine methane release. Ongoing environmental change might affect the methane marine cycle since significant changes in the thermal regime of bottom sediments within a few sites were registered. Correlation between calculated methane storage within the water column and both integrated salinity values (r = 0.61) and integrated values of dissolved inorganic carbon (DIC) (r = 0.62) suggest that higher concentrations of dissolved methane were mostly derived from the marine environment, likely due to in-situ production or release from decaying submarine gas hydrates deposits. The calculated late summer potential methane emissions tend to vary from year to year, reflecting most likely the effect of changing hydrological and meteorological conditions (temperature, wind) on the ESAS rather than riverine export of dissolved methane. We point out additional sources of methane in this region such as submarine taliks, ice complex retreat, submarine permafrost itself and decaying gas hydrates deposits.  相似文献   

20.
The biogeochemistry of the sulfur cycle in a ca. 5-m-long sediment core from the eastern slope (221 m water depth) of the Landsort Deep in the west-central Baltic Sea was investigated by analyzing the solid phase records of sulfur isotopes and pyrite textures, besides selected main and minor elements. The sediments were deposited during post-glacial history of the Baltic Sea when the basin experienced alteration of brackish (Yoldia Sea, Littorina Sea) and freshwater (Baltic Ice Lake, Ancylus Lake) conditions. The stable isotopic composition of total sulfur was analyzed as a function of depth. In selected samples pyrite (FeS2), greigite (Fe3S4), and barite (BaSO4) fractions were separated for isotope analyses. Pyrite textures were analyzed by SEM and optical microscopy.Microbial reactions associated with the oxidation of organic matter resulted in assemblages of authigenic sulfide minerals which for the post-Ancylus Lake brackish water environment are dominated by pyrite and for freshwater environments by Fe-monosulfides. The sulfur isotopic composition of the brackish water Littorina Sea sediments (δ34S between −40 and −27‰ vs. V-CDT) is believed to be determined by cellular sulfate reduction rates and reactions involving intermediate sulfur species. The availability of reactive iron and decomposable organic matter as well as sedimentation rate and the chemocline position are important variables upon the δ34S values of sulfides in brackish water environment. The syn-depositional abundance of sulfur and organic matter, and transport of dissolved sulfur species vs. rates of microbial reactions determine δ34S in the freshwater sediments. The upper part of the Ancylus Lake sediments is sulfidized by downward diffusing H2S and/or sulfate from overlying brackish water sediments. Minor concretionary barite formation in the freshwater sediments is most likely due to the reaction of pore water sulfate diffusing downward from brackish water sediments with barium desorbed from freshwater sediments. The size distribution of pyrite framboids in the brackish sediments indicates that the formation mainly occurred from anoxic pore waters, although some pyrite formation in an anoxic water column cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号