首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 2012 on, all CO2 emissions from flights departing from or arriving at airports within the European Union have to be offset. We analyze the economic and ecological impacts that are caused by an inclusion of the aviation industry into the proposed emissions trading scheme (ETS). Building on the now fixed system design we employ a simulation model to estimate the impacts of the scheme. Our results indicate that financial impacts are highly dependant on external settings, such as allowance prices and demand growth. We show that the financial burden on the aviation industry will be rather modest in the first years after the introduction of the system and therefore induce only low competition distortions. Likewise, emission reductions within air transportation will be comparably low. While aviation will induce a decline of emissions in other sectors, significant absolute reductions within air transportation can only be reached by a more restrictive system design.  相似文献   

2.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

3.
Capacity, demand, and vehicle based emissions reduction strategies are compared for several pollutants employing aggregate US congestion and vehicle fleet condition data. We find that congestion mitigation does not inevitably lead to reduced emissions; the net effect of mitigation depends on the balance of induced travel demand and increased vehicle efficiency that in turn depend on the pollutant, congestion level, and fleet composition. In the long run, capacity-based congestion improvements within certain speed intervals can reasonably be expected to increase emissions of CO2e, CO, and NOx through increased vehicle travel volume. Better opportunities for emissions reductions exist for HC and PM2.5 emissions, and on more heavily congested arterials. Advanced-efficiency vehicles with emissions rates that are less sensitive to congestion than conventional vehicles generate less emissions co-benefits from congestion mitigation.  相似文献   

4.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

5.
The accelerated diffusion of cleaner vehicles to reduce CO2 emissions in transport can be explicitly integrated in emission trading designs by making use of cross-sectoral energy efficiency investment opportunities that are found in data on CO2 emissions during the production and the use of cars and trucks. We therefore elaborate the introduction of tradable certificates that are allocated or grandfathered to manufacturers that provide vehicles (and other durable goods) that enable their customers to reduce their own CO2 emissions. This certificate is an allowance for each tonne CO2 avoided. Manufacturers can then sell these certificates on the emission market and use the revenues to lower the price of their cleanest vehicles. This mechanism should partially overcome the price difference with less efficient cars. In a simulation, we found that the introduction of the certificate in tradable permit systems can lead to very significant reductions of CO2 emissions. The simulations indicate that CO2 emissions resulting from the car fleet can be reduced by 25 to 38% over a period of 15 years (starting in 1999). For the truck fleet, the reduction potential is more limited but still very interesting.  相似文献   

6.
This paper presents a long-term investment planning model that co-optimizes infrastructure investments and operations across transportation and electric infrastructure systems for meeting the energy and transportation needs in the United States. The developed passenger transportation model is integrated within the modeling framework of a National Long-term Energy and Transportation Planning (NETPLAN) software, and the model is applied to investigate the impact of high-speed rail (HSR) investments on interstate passenger transportation portfolio, fuel and electricity consumption, and 40-year cost and carbon dioxide (CO2) emissions. The results show that there are feasible scenarios under which significant HSR penetration can be achieved, leading to reasonable decrease in national long-term CO2 emissions and costs. At higher HSR penetration of approximately 30% relative to no HSR in the portfolio promises a 40-year cost savings of up to $0.63 T, gasoline and jet fuel consumption reduction of up to 34% for interstate passenger trips, CO2 emissions reduction by about 0.8 billion short tons, and increased resilience against petroleum price shocks. Additionally, sensitivity studies with respect to light-duty vehicle mode share reveal that in order to realize such long-term cost and emission benefits, a change in the passenger mode choice is essential to ensure higher ridership for HSR.  相似文献   

7.
Improving the efficiency and sustainability of supply chains is a shared aim of the transport industry, its customers, governments as well as industry organisations. To optimize supply chains and for the identification of best practice, standards for their analysis are needed in order to achieve comparable evaluations. This need for an evaluation standard also applies to CO2 emission calculations. This research focuses on the transportation within supply chains and possible approaches towards a global standard for calculating its CO2 emissions. In the recent past, several organisations, national and international, have come forward with possible methods, tools and databases for the calculation of CO2 emissions along supply chains, but almost all of them do not cover the entire transportation chain. Also standards for CO2 emissions of products and production in general do exist but they do not take the particular requirements of transportation into consideration. Therefore a global standard specifically for transportation could not yet be introduced. The EN 16258 standard is the only international standard for emission calculation of transportation in supply chains. It was therefore analyzed as a possible starting point for a global standardization approach. Analysis shows it too contains gaps and ambiguities which render comparisons of supply chains difficult. These gaps of the EN 16258 are analyzed, followed by suggestions for methodological improvements for their closure. The research concludes with an outlook on next steps needed towards a global CO2 calculation standard for transportation within supply chains.  相似文献   

8.
The purpose of this paper is to investigate the effect of tourism on economic growth and carbon dioxide emissions in Eastern and Western European Union (EU) countries by incorporating FDI and trade in the production and CO2 emission functions. We apply panel econometric techniques which account for cross-sectional dependence and heterogeneity. The results of Westerlund panel cointegration test confirm a long-run equilibrium relationship among the variables. Results from long-run elasticities suggest that tourism stimulates economic growth in Eastern and Western EU countries. However, tourism increases CO2 emissions in Eastern EU but decreases in Western EU. This indicates that tourism has an adverse effect on the environment in Eastern EU. Finally, short-run heterogeneous panel causality test results suggest that tourism causes CO2 emissions in Eastern EU while economic growth and CO2 emissions cause tourism in Western EU. Overall, our findings suggest that tourism plays an important role in accelerating economic growth; however, its role on CO2 emissions largely depends on the adaptation of sustainable tourism policies and efficient management.  相似文献   

9.
To identify key factors of transport CO2 emissions and determine effective policies for emission reductions in fast-growing cities, this study establishes transport CO2 emission models, quantifying the influences of polycentricity and satellite cities and re-examining the effects of per capita GDP and metro service. Based on the model results, we forecast future residents’ urban transport CO2 emissions under several scenarios of different urban and transport policies and new energy technologies. We find nonlinear quadratic growth relationship between commuting CO2 emissions and per capita GDP, and the elasticities of household and individual commuting CO2 emission to per capita GDP are 1.90% and 1.45%, respectively. Developing job-housing balanced satellite cities and self-contained polycentric city can greatly decrease emissions from high emitters and can contribute to about 51–82% of the emission reductions by 2050 compared with the scenario of business as usual (BAU). Promotion of electric vehicles, electric public buses, metros, and improvement of traditional energy efficiency contributes to about 48–57% of the emission reductions by 2050 compared with the BAU. When these policies and technologies are combined, about 90% of the emissions could be reduced by 2050 compared with the BAU, and the emissions will be about 1.2–4.9 times of the present. The findings suggest that fostering polycentric urban form and job-housing balanced satellite cities is the key step for future transport CO2 emission reductions. Metro network promotion, energy efficiency improvement, and new energy type applications can also be effective in emission reductions.  相似文献   

10.
Mitigation of greenhouse gas emissions from transportation has become increasingly important and challenging especially for developing countries. This paper takes the inter-city passenger transport in China as a case, and develops a system dynamics model for policy assessment and CO2 mitigation potential analysis. It is found that the future demand for China’s inter-city passenger transport is expected to be large, with the turnover volume growing at a rate of 9% per annum and amounting to 6600 billion p-km in 2020. Major emissions reduction potential exists in inter-city passenger transport. In 2020, comparing to the case without any specific policies stressing mitigation, the reduction of CO2 emissions ranges from 26% to 32% under those scenarios with policy controls. Sensitivity analysis reveals that the CO2 mitigation will be best achieved by accelerating the development of railway network, together with slowing down the extension of highway network and imposing fuel taxes.  相似文献   

11.
After having implemented numerous regulations, e.g., coercive policies on vehicle use and purchase, it is becoming increasingly difficult to find further potential to control vehicle emissions in Beijing, as the air quality is still poor. This research provides a different approach for policy-makers to reduce vehicle emissions by managing demand. We found that parents ferrying their children to and from school is an important but long-neglected contributor to traffic congestion and vehicle emissions. This phenomenon is very common in China because of the social culture. In this research, parallel tests during both the school season and the non-school season were adopted, and emissions in both seasons were calculated based on travel demand and emission models. The results revealed that emissions factors (in g/km) for criteria pollutants and CO2 increased by over 10% during rush hours during the school season due to traffic condition deterioration compared with non-school season. Daily HC, CO, NOx, PM and CO2 emissions from the passenger car fleet were 8.3%, 7.8%, 6.4%, 6.3% and 6.5% higher compared with those during the non-school season, respectively. These differences are greater than the total vehicular emission reduction by other control measures in 2014 in Beijing. For policy makers, providing safe and efficient ways to ferry children would be a useful and harmonious strategy for future vehicle emission control.  相似文献   

12.
To support the development of policies that reduce greenhouse gas (GHG) emissions by encouraging reduced travel and increased use of efficient transportation modes, it is necessary to better understand the explanatory effects that transportation, population density, and policy variables have on passenger travel related CO2 emissions. This study presents the development of a model of CO2 emissions per capita as a function of various explanatory variables using data on 146 urbanized areas in the United States. The model takes into account selectivity bias resulting from the fact that adopting policies aimed at reducing emissions in an urbanized area may be partly driven by the presence of environmental concerns in that area. The results indicate that population density, transit share, freeway lane-miles per capita, private vehicle occupancy, and average travel time have a statistically significant explanatory effect on passenger travel related CO2 emissions. In addition, the presence of automobile emissions inspection programs, which serves as a proxy indicator of other policies addressing environmental concerns and which could influence travelers in making environmentally favorable travel choices, markedly changes the manner in which transportation variables explain CO2 emission levels.  相似文献   

13.
Car ownership in China is expected to grow dramatically in the coming decades. If growing personal vehicle demand is met with conventional cars, the increase in greenhouse gas emissions will be substantial. One way to mitigate carbon dioxide (CO2) emissions from passenger travel is to meet growing demand for cars with alternative vehicles such as hybrid- and battery-electric vehicles (HEVs and BEVs). Our study examines the cost-effectiveness of transitioning from conventional cars to HEVs and BEVs, by calculating their marginal abatement cost (MAC) of carbon in the long-run. We find that transitioning from conventional to hybrid and battery electric light-duty, four-wheel vehicles can achieve carbon emissions reductions at a negative cost (i.e. at a net benefit) in China. In 2030, the average MAC is estimated to be about −$140/ton CO2 for HEVs and −$515/ton CO2-saved for BEVs, varying by key parameters. The total mitigation potential of each vehicle technology is estimated to be 1.38 million tons for HEVs and 0.75 million tons for BEVs.  相似文献   

14.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

15.
Road transport is a major source of CO2 emissions in Ireland and accounts for almost 96% of the total CO2 emissions from the transport sector. Following the recent adopted UNFCCC reporting guidelines on annual inventories [24/CP.19], this study applied the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2006 IPCC GLs) tier 3 approach to estimate CO2 emissions from road transport at the vehicle category level, for the first time in Ireland. For this, disaggregated datasets were prepared based on year of vehicle registration and mileage since registration of the vehicle. Such an approach provided a more realistic national scenario in comparison to the use of average mileage degradation in emission calculations. This investigation comprised a recalculation of previous emissions estimates (1990–2012) and an estimation of CO2 emissions in 2013 using a previously unavailable level of data disaggregation for vehicle mileage as well as using vehicle class specific data and an improved bottom-up estimation methodology in COPERT. Historic vehicle fleet data were restructured, annual mileage data were estimated in relation to the fleet data and back extrapolated using a regression approach.The results showed that the mileage degradation was not only subject to fuel technology, engine size, and age but also the emissions class and vehicle category. It was also observed that the disaggregated level of data provided a different CO2 emissions split among the vehicle categories than that of previous estimations which were based on an aggregated level of data. Previous emissions inventories (1990–2012) were shown to have underestimated the share from diesel fuelled passenger cars by more than 56% in 2012. Diesel fuelled passenger cars were also found to account for the majority of CO2 emissions from road transport activities in Ireland in 2013. The level and trend assessment showed that emissions from Euro-II and Euro-III classed vehicles especially for passenger cars, which have a significant contribution to the total emission in 2013 have caused an increase in fleet level emissions in Ireland. In addition, the results also showed that the emissions share from Light Duty Vehicles and Heavy Duty Vehicles were overestimated by previous investigations. This paper highlights the importance of the resolution of data used in emissions inventory preparation which may impact upon future projections and policy formulation. The findings of this investigation are also discussed in relation their implications for road transport policy, including carbon taxation and future policy options aimed at achieving EU emissions target in 2020.  相似文献   

16.
Transportation CO2 emissions are expected to increase in the following decades, and thus, new and better alternatives to reduce emissions are needed. Road transport emissions are explained by different factors, such as the type of vehicle, delivery operation and driving style. Because different cities may have conditions that are characterized by diversity in landforms, congestion, driving styles, etc., the importance of assigning the proper vehicle to serve a particular region within the city provides alternatives to reduce CO2 emissions. In this article, we propose a new methodology that results in assigning trucks to deliver in areas such that the CO2 emissions are minimized. Our methodology clusters the delivery areas based on the performance of the vehicle fleet by using the k-means algorithm and Tukey’s method. The output is then used to define the optimal CO2 truck-area assignment. We illustrate the proposed approach for a parcel company that operates in Mexico City and demonstrate that it is a practical alternative to reduce transportation CO2 emissions by matching vehicle type with delivery areas.  相似文献   

17.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

18.
On the basis of a joint economic and legal analysis, we evaluate the effects of a “regional” (European) emission trading scheme aiming at reducing emissions of international shipping. The focus lies on the question which share of emissions from maritime transport activities to and from the EU can and should be included in such a system. Our findings suggest that the attempt to implement an EU maritime ETS runs into a dilemma. It is not possible to design a system that achieves emission reductions in a cost efficient manner and is compatible with international law.  相似文献   

19.
We consider a supply chain network design problem that takes CO2 emissions into account. Emission costs are considered alongside fixed and variable location and production costs. The relationship between CO2 emissions and vehicle weight is modeled using a concave function leading to a concave minimization problem. As the direct solution of the resulting model is not possible, Lagrangian relaxation is used to decompose the problem into a capacitated facility location problem with single sourcing and a concave knapsack problem that can be solved easily. A Lagrangian heuristic based on the solution of the subproblem is proposed. When evaluated on a number of problems with varying capacity and cost characteristics, the proposed algorithm achieves solutions within 1% of the optimal. The test results indicate that considering emission costs can change the optimal configuration of the supply chain, confirming that emission costs should be considered when designing supply chains in jurisdictions with carbon costs.  相似文献   

20.
Battery Electric vehicles (BEVs) are generally considered as potentially contributing to the reduction of CO2 emissions. Consequently, many countries have promoted (or are in the process of promoting) policies aimed at directly or indirectly subsidizing BEVs to accelerate their market uptake. The aim of this paper is to assess whether BEVs’ subsidies are justified (and by what amount) with reference to the carbon component, distinguishing by car segments and countries. To address these research questions, a simulation model is developed, based on the most recent and reliable data available. The model estimates and monetizes the Well-to-Wheel CO2 emissions of six car segments in 28 European countries. The monetary value of the difference of the CO2 emissions between the non-BEVs and the BEVs ranges from −€1133 (tax) to +€3192 (subsidy), depending on the car segment and on the nation considered. These results are then compared to the policies about alternative fuels adopted by the single EU countries, suggesting in some cases the necessity to rethink such incentives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号