首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
列车与刚梁柔拱组合系桥系统的地震响应分析   总被引:6,自引:0,他引:6  
主要讨论地震荷载作用时车桥系统的动力响应特征及对行车稳定性的影响。建立了地震作用下综合考虑输入地震波,轨道不平顺和车辆蛇行运动的车桥体系振动的动力分析模型,推导了体系动力平衡方程组。通过对系统输入各种典型的地震波,在计算机上模拟了列车过桥的全过程动力响应。计算了桥梁的线性和非线性响应,研究了列车荷载及桥梁下部结构刚度对地震响应的影响。以一座刚梁柔拱组合系桥为例,研究地震发生时桥上列车的运行稳定性和  相似文献   

2.
针对地震作用下高速铁路轨道-桥梁系统损伤与轨道不平顺的对应关系不明确问题, 运用能量变分原理,推导了多层叠合结构层间变形协调关系表达式,将该表达式应用在高速铁路单元式和纵连式无砟轨道-桥梁系统中,按系统轨道形式与梁跨结点进行划段装配,提出了考虑路基与简支引桥影响的高速铁路基础结构变形与轨道不平顺的对应关系;采用现场实测、数值仿真模型与列车-轨道-连续梁桥-路基耦合动力学理论对对应关系进行了验证,并统计了地震作用下轨道-桥梁系统的损伤规律;基于提出的对应关系求得了考虑地震损伤的轨道不平顺样本,并采用数值仿真模型对其进行验证。研究结果表明:提出的对应关系与数值仿真模型求得的桥梁变形引起的轨道不平顺及现场实测值吻合较好,最大误差不超过5%,且轨道不平顺作用下车-桥动力学性能指标变化也基本一致,验证了本文提出的对应关系的正确性和有效性;地震作用下轨道-桥梁系统层间各部件的损伤较小,而支座的损伤较大,系统部件最大损伤位置在主梁梁缝处,但也仅约为支座损伤的1%;在不同水准地震作用下,采用提出的对应关系和数值仿真模型计算的地震损伤与轨道不平顺的对应曲线均吻合良好,说明提出的对应关系可用于计算与预测地震作用下高速铁路轨道-桥梁系统的轨道平顺性。   相似文献   

3.
列车—斜拉桥系统在风载作用下的动力响应   总被引:3,自引:0,他引:3  
主要研究脉动风与列车荷无同时作用下斜拉桥的横向振动问题,首先建立了横风作用下并考虑了轨道不平顺和车辆蛇行的车桥系统动力分析模型,推导了体系平衡方程组,编制了有关的计算机程序;根据Davenport风速功率谱模拟产生脉动风样本,并将其作为系统的随机激励,在计算机上模拟列车过桥的全过程,按不同车速计算了桥梁跨中和桥塔的横向位移、加速度以及桥上车辆的横向振动和加速率响应,以一铁路斜拉桥为例,着重讨论了在  相似文献   

4.
为获得各轮轴处轨道不平顺,用于列车.桥梁振动控制和随机振动分析,研究了轨道不平顺的模拟方法.采用白噪声滤波法生成单轮轴的轨道不平顺;为实现不平顺波长选择,提出了成型滤波器参数的宽频带识别法.为考虑各轮轴间的时延,利用相邻轮轴间的短时滞,构造了基于高阶Pade近似的累次时滞系统.将成型滤波器与时滞系统相结合,得到了以白噪声为输入、列车各轮轴处轨道不平顺为输出的状态方程.算例表明,模拟样本与轨道不平顺目标谱密度相符,且满足各轮轴处轨道不平顺之间的时滞关系.  相似文献   

5.
本文用谱分析方法,分析和计算了机车在直线轨道上匀速运行时对轨道横向随机不平顺输入的动力响应,计及了轨道的横向弹性及轮轨间的非线性几何关系。在计算中采用统计线性化方法和迭化法,将结果与线性情况作了比较。  相似文献   

6.
建立了移动列车荷载作用下点支承连续弹性粱的轨道结构垂向振动动力学分析模型.针对提速线路,采用动力有限元分析方法。分别讨论并比较了有无钢轨初始不平顺条件下,机车以不同行驶速度通过有刚度突变轨道地段时,轨道结构的动力响应规律.理论分析计算表明,线路初始不平顺和由轨枕失效、暗坑等造成的基础刚度的突变对整个轨道结构的动力响应有着显著影响.  相似文献   

7.
轨道扭曲不平顺安全限值的研究   总被引:6,自引:0,他引:6  
本文用车辆-系统耦合动力学的理论,分析了轨道扭曲不平顺的幅值对车辆动力学性能的影响,并以《铁道车辆动力学性定办法和试验鉴定规范》中规定的第二限度(安全限度)为评定准则,提出了轨道扭曲不平顺的安全限值,并对其临时补修标准作出了评价。  相似文献   

8.
根据弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则,考虑了连续梁钢管混凝土拱桥桥面因温度和徐变作用而产生的变形影响,将其以组合曲线的形式叠加到轨道不平顺中进行列车走行性分析,建立车桥系统振动方程。采用计算机模拟的方法,建立列车和桥梁动力分析的有限元模型,研究了桥面徐变变形及温度变形对车桥系统耦合振动的影响。结果表明:桥面的徐变及温度变形所致的线路不平顺对轮重减载率、车体竖向加速度和竖向Sperling指标的影响较为显著。因此,在评判桥上列车的运行安全和舒适性时,尤其对于高速铁路,应考虑混凝土徐变及温变产生的桥面变形引起的轨道不平顺影响。  相似文献   

9.
轨道不平顺与车轨动力响应之间的关系分析   总被引:1,自引:0,他引:1  
从时域和频域两个方面来研究轨道不平顺与车轨动力响应之间的关系.首先,利用轨道不平顺和轮轨动力学模型来计算轮轨间的动力荷载,加载到轨道有限元模型上得到一定运量下的道床变形和轨道不平顺分布;其次,利用傅立叶变换分别得到了一定运量后轨道不平顺的里程-功率谱、平均功率谱及其拟合谱,分析了不同波长不平顺同道床沉降之间的相关性,并同现场数据相对照.再次,结合现场轨检车的测力轮对数据,包括轨道不平顺、轮载和车体振动加速度,分别从时域和频域两个方面对三者之间的相关性进行分析,并分析了轨道不平顺状态对车轨动力响应的影响程度;最后,认为道床沉降主要影响的是轨道长波不平顺,而对短波不平顺则影响不大,而且从时域和频域来看,轨道不平顺的分布与车体振动加速度的分布相类似,而与轮载分布不同,而且波长较长的轨道不平顺引起车体的振动,它是影响车体振动和车辆运行平稳性的主要因素.  相似文献   

10.
纵向压力作用下重载机车与轨道的动态相互作用   总被引:1,自引:0,他引:1  
为了研究重载机车的轮轨动态安全性,考虑车钩纵向力对重载机车与轨道结构系统动力学性能的影响,根据实测车钩力和线路不平顺,对重载机车在直线轨道和曲线轨道上制动时的轮轨动态相互作用性能进行了仿真计算.研究结果表明,在纵向车钩力为1500kN,车钩自由角为3°的工况下,重载机车以80km/h的速度在直线轨道上和以60km/h的速度在曲线轨道上制动时,所有轮轨安全性能指标满足行车要求.  相似文献   

11.
车辆-轨道耦合动力学在轨道下沉研究中的应用   总被引:1,自引:0,他引:1  
将车辆-轨道耦合振动模型和轨道累积下沉计算模型相结合,以轨道结构动力学响应参量和轨面高低不平顺状态变化作为两者间的联结纽带,从车辆-轨道耦合动力学角度研究了轨道的下沉变形特性.研究结果表明,随着轨道动荷载重复作用次数的增加,轨道下沉量逐渐累积;轨面初始不平顺对轨道下沉变化影响较大;受轨道累积下沉的影响,轮轨力、轨道结构响应加大.  相似文献   

12.
京沪高速南京越江钢斜拉桥车桥耦合振动分析   总被引:7,自引:1,他引:6  
运用桥梁结构动力不写车辆动力学的研究方法,将车桥作为联合动力体系,以京沪高速铁路南京越江方案我钢斜拉桥为研究对象,进行了高速列车过桥时的车桥空间耦合振动响应分析,着重研究了列车速度变化时对桥梁的挠度,车辆舒适度及脱轨安全度的影响。  相似文献   

13.
车辆——轨道耦合系统随机振动分析   总被引:1,自引:0,他引:1  
将轨道高低不平顺视为平稳各态历经随机过程,利用车辆-轨道耦合动力有限元计算模型,对车辆-轨道系统垂向随机动做了计算,在时域和频域内对系统响应作了分析。  相似文献   

14.
为保障高速铁路桥墩沉降区域的列车运行安全平稳性,提出了一种基于列车-轨道-桥梁动力相互作用理论的高速铁路桥墩沉降控制阈值研究方法;探讨了既有标准中的桥墩沉降限值,并确定了影响桥墩沉降控制阈值的关键因素;基于列车-轨道-桥梁动力相互作用理论,考虑轨道随机不平顺、轮轨非线性接触关系等非线性因素,建立了考虑桥墩沉降和多影响因素的高速列车-轨道-桥梁耦合动力学模型;在此基础上,研究了多因素条件下桥墩沉降对列车-轨道-桥梁系统的影响,并从保证列车安全平稳运营的角度提出了适用于中国高速铁路桥墩沉降的控制阈值。研究结果表明:研究高速铁路桥墩沉降控制阈值时不能忽略轨道随机不平顺、温度作用、混凝土收缩徐变等因素的影响;随着桥梁跨度的增大,混凝土收缩徐变和温度作用导致车体垂向加速度和轮重减载率增大,桥墩沉降则导致上述指标减小;考虑多因素后,车体垂向加速度和轮重减载率与不考虑这些影响因素相比明显增大;随着桥墩沉降的增大,列车通过不同不平顺样本时车体垂向加速度和轮重减载率均超标;为保证列车运行安全性与乘坐舒适性,高速铁路桥墩沉降控制阈值建议为10 mm;在本文得到的控制阈值基础上进一步考虑施工误差等其他因素即可得到准确的标准限值,研究结果可为桥墩沉降限值的最终确定提供研究方法和数据支撑。   相似文献   

15.
不同无砟轨道类型对车辆动力学特性影响的数值分析   总被引:1,自引:1,他引:0  
利用车辆-轨道耦合动力学理论,建立了不同类型无砟轨道垂向耦合动力学模型,分别计算了整体式无砟轨道、板式无砟轨道以及浮置板式无砟轨道在列车运行下的振动响应,分析比较系统振动响应受无砟轨道道床类型、车速、不平顺波深、扣件刚度和板下弹簧刚度的影响。结果表明,系统振动响应均随车速的提高而增大;车速、不平顺波深、扣件刚度和板下弹簧刚度对整体道床式无砟轨道系统振动响应影响最大,板式无砟轨道次之,对浮置板式无砟轨道系统振动响应影响最小;相对而言,浮置板式无砟轨道动力特性最好,其次为板式无砟轨道,整体式无砟轨道的动力特性最差。  相似文献   

16.
根据高速列车的荷载特点,着重分析研究了高速轨道的动力响应及轮轨间的相互作用,建立了计算模型,进行了大量计算,并根据计算结果分析了轨道部件及轨道几何不平顺对轨道动力响应的影响,进而对高速轨道结构模式与几何标准提出了建议。  相似文献   

17.
为了探究地震对高速列车和桥梁的影响,建立车辆-桥梁空间耦合系统模型。将规格化的地震波作为激励,同时考虑轨道随机不平顺的影响。采用新型显式积分法求解系统方程。分析不同烈度地震作用下车桥耦合系统的动力响应。数值结果表明,地震烈度在桥梁的抗震设防烈度范围内时,桥梁的振动加速度和挠度响应均符合规范的限值要求。车辆运行平稳性的Sperling指标相对加速度指标较为宽松,当地震烈度为7度及以上时,车辆已不能平稳地运行于桥梁之上。在相对较弱的地震作用下,轨道随机不平顺对桥梁的垂向加速度响应影响明显,不应忽略。  相似文献   

18.
基于耦合动力学理论,利用有限元方法建立了车辆-轨道耦合系统振动分析模型,输入不同截止波长的不平顺数据进行动力仿真计算,以确定轨道不平顺管理波长范围.高低不平顺主要影响车体的沉浮和点头运动,引起车体垂向加速度增大;轨向不平顺主要影响车体的侧滚和摇头,引起车体横向振动加速度增大.长波不平顺的影响主要体现在车体振动上,因此本文选定车体加速度作为确定不利波长的判定指标,对提速线路200km/h和250km/h速度下轨道不平顺波长管理的范围进行了探讨,并提出了提速线路轨道不平顺波长管理的建议.  相似文献   

19.
轨道不平顺激励下直线电机车辆/轨道动力响应   总被引:2,自引:0,他引:2  
为了提高直线电机轮轨交通车辆运行的安全性与乘坐舒适性,分析了车轨结构特征,建立了直线电机车辆/板式轨道横、垂向动力学模型。通过三角级数法得到轨道随机不平顺的时间序列,以其作为系统激励,分析了直线电机车辆与轨道的随机振动特性。把轨道不平顺描述为余弦函数,研究了高低不平顺与方向不平顺的波长和幅值对系统动力响应的影响规律。计算结果表明:磁轨气隙变化的频率主要集中在1.2~2.0Hz范围内,波长小于10m的高低和方向不平顺对系统轮轨作用力、脱轨系数及轮重减载率等影响显著增大,应予以重点控制。  相似文献   

20.
线路不平顺波长对提速列车横向舒适性影响   总被引:3,自引:5,他引:3  
为提高列车在提速区段的乘坐舒适性,借助于现场试验测试数据,运用车辆-轨道耦合动力学理论,通过轨道随机不平顺功率谱变换得到不同波长的不平顺,研究了线路不平顺波长对列车运行平稳性及乘坐舒适性的影响及规律。分析结果表明:提速机车以150km.h-1速度在直线轨道上运行时,如果线路不平顺波长为1~20m,则车体振动主频主要集中在2.20~4.00Hz,避开了人体正常敏感频率,平稳性指标属优级;如果线路不平顺波长为20~30m,则车体振动主频降低至1.50Hz左右,正好处于人体敏感频率范围,乘坐舒适性大大降低,平稳性指标值增加了20%多;更长的波长(大于30m)对机车运行平稳性影响较小,指标与1~20m波长的相应值处于相同等级。可见,对于既有提速线路,必须严格控制不平顺的20~30m波长,虽然该波段的不平顺幅值很小,但对列车在提速区段车体横向振动影响甚大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号