首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

This paper presents a state observer design for an adaptive vehicle suspension. Based on simulations, two main issues are investigated, (a) the selection of measurement signals in relation to estimation accuracy and sensing needs and (b) the effects of variations in both road inputs and vehicle parameters on estimation accuracy. Meanwhile, the system stabilities are also examined concerning the effects of using different combination of measurement states and the system parameter variations in practical, possible ranges.  相似文献   

2.
为了解决智能车动态组合定位过程中,因动力学模型与实际模型之间存在偏差导致滤波精度下降的问题,针对智能车全球导航卫星系统(GNSS)/惯性测量单元(IMU)组合定位系统,结合非线性预测滤波(NPF)和自适应滤波的优点,提出了一种考虑动力学模型系统误差实时估计和补偿的自适应非线性预测滤波(ANPF)算法。首先,根据NPF算法原理,通过最小化预测观测残差与系统误差的加权平方和,估计动力学模型系统误差;其次,结合自适应滤波原理,利用状态预测残差向量构造自适应因子,设计了一种自适应扩展卡尔曼滤波(AEKF)算法,用于估计系统状态向量,并通过自适应因子抑制动力学模型系统误差和线性化误差对系统状态估计精度的影响,克服NPF对系统状态估计精度有限的缺陷;再次,对动力学模型系统误差的估计误差和由动力学模型系统误差引起的系统噪声的等效协方差阵进行了分析和推导,以补偿动力学模型系统误差对系统状态估计的影响;最后,通过车载GNSS/IMU组合定位系统试验,从算法精度、鲁棒性和实时性方面对提出的算法和其他滤波算法的性能进行了验证和对比分析。研究结果表明:提出的自适应算法继承了NPF算法简易性和高实时性的优点,同时克服了NPF算法估计精度有限的缺陷,具有较好的滤波解算精度,水平定位精度小于1.0 m,算法单次平均执行时间约为0.013 9 ms,在精度和实时性的平衡方面显著优于其他滤波方法。  相似文献   

3.
A robust control algorithm for an anti-lock brake system is proposed. The method used is based on static-state feedback of longitudinal slip and does not involve controller scheduling with changing vehicle speed or road adhesion coefficient estimation. An improvement involving scheduling of longitudinal slip reference with longitudinal acceleration measurement is included. Electromechanical braking actuators are used in simulations, and the algorithm used in this study is shown to have high performance on roads with constant and varying adhesion coefficients, displaying nice robustness properties against large vehicle speed and road adhesion coefficient variations. Guidelines are provided for tuning controller gains to cope with unknown actuator delay and measurement noise.  相似文献   

4.
Vehicle dynamics control (VDC) systems require information about system variables, which cannot be directly measured, e.g. the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under the assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilise an unscented Kalman filter for estimation purposes, since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the empiric Magic Formula in order to describe the vehicle and tyre behaviour. Moreover, an advanced vertical tyre load calculation method is developed that additionally considers the vertical tyre stiffness and increases the estimation accuracy. Experimental tests show good accuracy and robustness of the designed vehicle state estimation concept.  相似文献   

5.
A methodology is presented for estimating vehicle handling dynamics, which are important to control system design and safety measures. The methodology, which is based on an extended Kalman filter (EKF), makes it possible to estimate lateral vehicle states and tire forces on the basis of the results obtained from sinusoidal steering stroke tests that are widely used in the evaluation of vehicle and tire handling performances. This paper investigates the effect of vehicle-road system models on the estimation of lateral vehicle dynamics in the EKF. Various vehicle-road system models are considered in this study: vehicle models (2-DOF, 3-DOF, 4-DOF), tire models (linear, non-linear) and relaxation lengths. Handling tests are performed with a vehicle equipped with sensors that are widely used by vehicle and tire manufacturers for handling maneuvers. The test data are then used in the estimation of the EKF and identification of lateral tire model coefficients. The accuracy of the identified values is validated by comparing the RMS error between experimentally measured states and regenerated states simulated using the identified coefficients. The results show that the relaxation length of the tire model has a notable impact on the estimation of lateral vehicle dynamics.  相似文献   

6.
A new approach is proposed for nonlinear asymptotic observers based on the cascade observer system with a fusion of sensor signals. In the observers, the characteristic of the vehicle dynamic system, the nonlinear tire force estimation, load transfer estimation, and road ramp angle compensation are considered. The errors in the observation of vehicle velocity were diminished, and the computation cost was decreased for a real-time microcontroller. Simulation and real vehicle test results validate the higher accuracy of the velocity estimation by the proposed observers under complicated handling maneuver conditions.  相似文献   

7.
Individual tyre models are traditionally derived from component tests, with their parameters matched to force and slip measurements. They are imported into vehicle models which should, but do not always properly provide suspension geometry interaction. Recent advances in Global Positioning System (GPS)/inertia vehicle instrumentation now make full state measurement viable in test vehicles, so tyre slip behaviour is directly measurable. This paper uses an extended Kalman filter for system identification, to derive individual load-dependent tyre models directly from these test vehicle state measurements. The resulting model therefore implicitly compensates for suspension geometry and compliance. The paper looks at two variants of the tyre model, and also considers real-time adaptation of the model to road surface friction variations. Test vehicle results are used exclusively, and the results show successful tyre model identification, improved vehicle model state prediction – particularly in lateral velocity reproduction – and an effective real-time solution for road friction estimation.  相似文献   

8.
In this paper, a reduced-order sliding mode observer (RO-SMO) is developed for vehicle state estimation. Several improvements are achieved in this paper. First, the reference model accuracy is improved by considering vehicle load transfers and using a precise nonlinear tyre model ‘UniTire’. Second, without the reference model accuracy degraded, the computing burden of the state observer is decreased by a reduced-order approach. Third, nonlinear system damping is integrated into the SMO to speed convergence and reduce chattering. The proposed RO-SMO is evaluated through simulation and experiments based on an in-wheel motor electric vehicle. The results show that the proposed observer accurately predicts the vehicle states.  相似文献   

9.
Vehicle distance estimation using a mono-camera for FCW/AEB systems   总被引:2,自引:0,他引:2  
For robust vision-based forward collision warning (FCW) and autonomous emergency braking (AEB) systems, not only reliable detection performance including high detection rate and low false positives but also accurate measurement output of a target vehicle is required. Especially, in order to reduce false alarm or activation of FCW/AEB systems, the systems require the precise measurement output of a target object, such as position, velocity, acceleration, and time-to-collision (TTC). In this study, we developed a measurement estimation algorithm of a target vehicle using a monocular camera. This method estimates two cases of vehicle widths for a target vehicle by using the detected lane information and a pin-hole camera model. After that, the position, velocity, acceleration, and TTC of a target vehicle are estimated by using a Kalman filter for the each estimated vehicle width. To improve robustness, the both estimation results using the detected lane information and the pinhole camera model are fused. This estimation algorithm was evaluated and compared with the state-of-the-art technology. As a result, the proposed measurement output estimation method can improve the performance of the FCW/AEB systems.  相似文献   

10.
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.  相似文献   

11.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

12.
This paper provides a new method to solve the problem of suspension system state estimation using a Kalman Filter (KF) under various road conditions. Due to the fact that practical road conditions are complex and uncertain, the influence of the system process noise variance and measurement noise covariance on the estimation accuracy of the KF is first analysed. To accurately estimate the road condition, a new road classification method through the vertical acceleration of sprung mass is proposed, and different road process variances are obtained to tune the system’s variance for the application of the KF. Then, road classification and KF are combined to form an Adaptive Kalman Filter (AKF) that takes into account the relationship of different road process noise variances and measurement noise covariances under various road conditions. Simulation results show that the proposed AKF algorithm can obtain a high accuracy of state estimation for a suspension system under varying International Standards Organisation road excitation levels.  相似文献   

13.
为提高网络延迟攻击下自动驾驶车辆定位估计算法的精确度,研究了延迟模型下自动驾驶车辆定位的无偏差有限脉冲响应(UFIR)估计器设计方法,并仿真实验。搭建延迟攻击下的车辆运动学模型,拓展模型至有限长度的时间窗口,推导UFIR算法按批处理式与迭代式表达形式,分析Apollo系统各功能模块的数据流动,基于LG开源自动驾驶仿真器(LGSVL)与Apollo系统,搭建联合仿真测试平台并开展实验。结果表明:与Kalman滤波器(KF)相比,该算法估计精确度更高;当延迟数据出现较大变化时,算法响应速度更快,波动幅值更小,鲁棒性更强。当数据延迟时间小于等于1 s时,估计效果良好。因而,验证了基于LGSVL与Apollo系统进行自动驾驶仿真实验的可行性。  相似文献   

14.
以两轮驱动轿车为研究对象,提出了一种基于加速度及轮速信息的参考车速估计方法。以Kalman滤波为基本算法,结合试验分析,通过估计系统噪声特征和修正量测方程,改进了算法对加速度量测信号静态偏差变化的跟踪能力,提高了参考车速的估计精度。利用该方法估计参考车速具有不依赖大量试验、计算量小的特点,适于实车应用。  相似文献   

15.
Road bank angles have a direct influence on vehicle dynamics and lateral acceleration measurement. A vehicle stability control system that knows road bank angle has an advantageous capability in achieving desired control sensitivities for maneuvers on ice and snow, among all surfaces, while avoiding false/nuisance activation on a banked road. Since neither lateral velocity nor road bank angle are directly measurable in current vehicle systems due to economical reasons, the major challenge is to differentiate the bias induced by road bank disturbances from actual effect of vehicle lateral dynamics in current measurements. This paper proposes a method of road bank estimation and provides theoretical background for the decoupling effort of lateral dynamics and road disturbances involved in bank estimation.  相似文献   

16.
Stochastic optimal control and estimation theories are used to design an active suspension system for a cab ride in a tractor-semitrailer vehicle. A discrete-continuous vehicle model with eleven degrees of freedom is augmented by a stochastic road excitation model and a human perception of vibration shape filter. Both perfect measurement and estimated state cases are considered. The impact of the measurement noise on the design of the optimal controller is demonstrated. The performance of the optimally controlled system is compared with an optimal passive system. It is shown that significant improvements in ride comfort can be achieved through the use of actively controlled cab suspensions.  相似文献   

17.
Road bank angles have a direct influence on vehicle dynamics and lateral acceleration measurement. A vehicle stability control system that knows road bank angle has an advantageous capability in achieving desired control sensitivities for maneuvers on ice and snow, among all surfaces, while avoiding false/nuisance activation on a banked road. Since neither lateral velocity nor road bank angle are directly measurable in current vehicle systems due to economical reasons, the major challenge is to differentiate the bias induced by road bank disturbances from actual effect of vehicle lateral dynamics in current measurements. This paper proposes a method of road bank estimation and provides theoretical background for the decoupling effort of lateral dynamics and road disturbances involved in bank estimation.  相似文献   

18.
Optimal Linear Preview Control of Active Vehicle Suspension   总被引:10,自引:0,他引:10  
The problem of linear preview control of vehicle suspension is considered as a continuous time stochastic optimal control problem. In the proposed approach minimal a priori information about the road irregularities is assumed and measurement errors are taken into account. It is shown that estimation and control issues can be decoupled. The problem formulation and the analytical solution are given in a general form and hence they apply to other problems in which the system disturbances are unknown a priori, even in a stochastic sense, but some preview information is possible.

The solution is applied to a two-degree-of-freedom (2-DOF) vehicle model. The effects of preview information on ride comfort, road holding, working space of the suspension and power requirements are examined in time and frequency domains. The results show that the greatest potential is for improving road holding properties. This effect could not have been observed in previous studies based on a 1-DOF vehicle model. It is also demonstrated that the presence of preview drastically reduces power requirements, thus relieving the performance versus actuator power dilemma.  相似文献   

19.
A linear-quadratic optimal controller is proposed for vehicle start-up, which is designed as a linear feedback form of the states and the measured (estimated) disturbances. The requirements of less friction loss and less driveline shock are represented by the weighting matrices of the cost function. The driver’s intension is also considered and the controller gains are adjusted on-line accordingly. The designed control strategy is tested on a complete powertrain simulation model. Through large amount of simulations, it is verified that the system is robust to the variations of driving conditions, such as variation of vehicle mass and road grade. It is also shown that the control performance is influenced greatly by the estimation error of engine torque and clutch torque, and the acceptable level of mean estimation error is about ±10%.  相似文献   

20.
Kalman算法在纯电动汽车SOC估算中的应用误差分析   总被引:1,自引:0,他引:1  
针对纯电动汽车电池组的工作状态和输出特性,分析了模型参数的变化对Kalman算法估算精度的影响.指出了纯电动汽车应用Kalman滤波算法估算SOC应考虑的因素,并结合电池模型参数的变化提出了Kal-man方程修正方案.最后通过电池的城市工况模拟试验,验证了分析的正确和可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号