首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
为了研究泡沫温拌技术对SBS改性沥青混合料的影响,从SBS泡沫沥青的制备参数、混合料适宜的压实温度以及路用性能进行系统性的分析.试验结果表明,发泡时SBS改性沥青加热温度为170℃,用水量为沥青总量的3%;SBS泡沫温拌沥青混合料适宜的成型温度为150℃;SBS泡沫沥青混合料的高温性能和水稳定性与常规热拌沥青混合料的高温性能相当,低温性能略低但满足规范要求.  相似文献   

2.
为确定泡沫温拌沥青混合料的压实温度,以发泡后的SBS改性沥青作为胶结料,在不同温度下用旋转压实分别成型Sup-20、AC-13沥青混合料试件,通过分析泡沫温拌和常规热拌沥青混合料在压实过程中剪应力与旋转次数的关系,确定泡沫沥青混合料的成型温度,并采用高温车辙试验、低温小梁弯曲试验、冻融劈裂试验验证此压实温度下泡沫温拌沥青混合料的路用性能.结果表明:SBS改性泡沫沥青的最佳压实温度为130℃,在130℃下成型泡沫温拌沥青混合料的高温性能、低温性能和抗水损害性能与热拌相当,均满足规范要求.  相似文献   

3.
为研究泡沫温拌沥青混合料路用性能,采用两种不同的沥青根据拌和温度与压实温度确定泡沫温拌沥青混合料的成型温度;通过车辙试验、低温弯曲试验、冻融劈裂试验和疲劳试验对比研究了泡沫温拌沥青混合料与热拌沥青混合料路用性能的差异。结果表明:泡沫温拌沥青混合料的各项路用性能均满足相关规范要求。对于基质沥青而言,泡沫温拌沥青混合料的高温性能略低于热拌沥青混合料,其它路用性能均优于热拌沥青混合料;泡沫温拌改性沥青混合料的路用性能均优于其它两种基质沥青混合料。  相似文献   

4.
为了研究不同温拌技术对沥青性能以及再生沥青混合料压实温度的影响,选择了三种温拌剂掺入到SBS改性沥青中制得温拌沥青,检测温拌沥青及将SBS改性沥青经过发泡设备发泡得到的泡沫沥青的性能指标,并通过旋转压实方法成型试件,测定并计算体积参数,从而得到各种温拌技术的最佳压实温度。研究表明:表面活性类温拌剂对沥青性能影响较小,降温效果优于有机降粘类与发泡沥青。  相似文献   

5.
为进一步科学化评价泡沫沥青冷再生混合料路用性能,对比分析了不同泡沫沥青含量下泡沫沥青冷再生混合料各项路用性能指标.选取了劈裂强度、干湿劈裂强度比、动稳定度、冻融劈裂强度比、残留稳定度和疲劳寿命等6项技术指标作为评价指标,建立了基于功效系数法的泡沫沥青冷再生混合料路用性能评价模型,科学评价了泡沫沥青冷再生混合料路用性能,并确定了泡沫沥青冷再生混合料中泡沫沥青的最佳含量.结果表明:沥青最佳发泡条件为:温度155℃,用水量3.0%;最佳含水率为6.8%;基于功效系数法的泡沫沥青冷再生混合料路用性能综合评价体系较为准确、可靠,5种方案总功效系数大小顺序为A3>A2>A4>A1>A5;泡沫沥青含量为3.0%时,泡沫沥青冷再生混合料的路用性能相对更好.  相似文献   

6.
为确定泡沫温拌沥青混合料的室内压实温度,选择泡沫沥青Sup20混合料与道路石油沥青Sup20混合料进行室内的旋转压实试验,对比不同温度下成型试件的体积指标,确定泡沫温拌的压实温度,并且选择泡沫沥青的粘温曲线以及路用性能进行验证.结果表明:粘温曲线与体积指标确定的压实温度一致,泡沫沥青混合料的路用性能均满足规范要求,所以泡沫温拌沥青Sup20混合料的室内压实温度为130℃.  相似文献   

7.
采用冻融劈裂试验,研究不同RAP(回收沥青路面材料)掺量、再生混合料的短期老化和不同成型温度下温拌再生沥青混合料水稳定性的变化。研究结果表明:温拌再生混合料的水稳定性随着RAP掺量的增加而下降,经过短期老化后的温拌再生混合料水稳定性有所增强;为保证路用性能,温拌再生沥青混合料中RAP掺量在40%以内时的成型温度最大可降低25~30℃,掺量为50%时最大可降温10℃。  相似文献   

8.
文章分别采用黏温曲线与旋转压实等体积法确定了温拌SBS沥青混合料的压实温度,并通过室内试验对等体积法成型的温拌沥青混合科进行了性能评价.试验结果表明:利用沥青黏温曲线预估的碾压温度降幅较小,仅为16℃,而利用旋转压实等体积法确定出的温拌SBS沥青混合料的降温幅度达35℃,并且其路用性能与热拌SBS沥青混合料相当.  相似文献   

9.
针对现有泡沫沥青评价指标——膨胀率和半衰期用于评价泡沫温拌沥青发泡效果存在不足,在基于激光测距仪、数码相机等设备的非接触式试验方法上提出采用泡沫直径、尺寸分布、消泡速率评价泡沫温拌沥青发泡效果。试验结果表明:泡沫直径受用水量影响比沥青温度大,印证了用水量比沥青温度对沥青发泡效果影响更大;90 s泡沫尺寸分布最集中,符合沥青发泡中泡沫稳定机理;消泡速率k值随用水量增大增加,印证了随用水量增加半衰期减小的结论;此外,从消泡速率变化情况表明泡沫沥青在拌合、运输、摊铺碾压阶段均可提高沥青混合料和易性。非接触试验方法与3个指标相结合能较准确的表征沥青发泡的整个过程,更好的评价发泡效果,有助于按照实际泡沫温拌沥青施工要求找到最佳的拌合时间点、发泡温度、用水来量等条件。  相似文献   

10.
选取有机添加剂Sasobit和人工沸石两种温拌剂,采用东海70号沥青配置温拌沥青,选取AC-13矿料级配拌制沥青混合料。通过黏温曲线和马歇尔试件的体积指标分别确定两种温拌剂各自的最佳掺量;在最佳掺量的条件下通过不同温度下成型马歇尔试件和旋转压实试件,观察其空隙率的变化规律来研究两种温拌沥青混合料的降温效果。研究表明:两种温拌剂都可降低沥青的高温黏度,其黏度随温拌剂掺量的增加而减小;Sasobit最佳掺量为3%(与沥青的比例),在马歇尔击实条件下,加入Sasobit的WMA的成型温度比HMA的成型温度降低了14℃;人工沸石的最佳掺量为0.3%(与混合料的比例),在马歇尔击实条件下,加入人工沸石的WMA成型温度比HMA的成型温度降低了20℃,在旋转压实的情况下两者的温度降低了接近30℃。  相似文献   

11.
通过对不同成型温度下温拌沥青混合料和热拌沥青混合料旋转压实曲线进行试验研究,探讨温拌沥青混合料的压实与抗车辙性能,并通过室内成型试验,对温拌沥青混合料的体积性质进行分析,建议温拌沥青混合料的成型温度可较热拌沥青混合料降低20℃左右。  相似文献   

12.
为了对比研究热拌与DAT温拌沥青混合料的路用性能的不同,首先研究掺加沥青质量10%的DAT对SBS改性沥青的影响;其次,根据规范对AC-5型混合料按照室内拌和及成型温度制作马歇尔试件,测定各项指标,将温拌沥青混合料与热拌沥青混合料路用性能进行对比分析.试验结果表明:温拌剂DAT对SBS改性沥青影响不大,在拌合和成型温度上较热拌降低15℃前提下,DAT温拌沥青混合料高温稳定性能有所提高,水稳定性、低温稳定性有所下降,但仍符合规范要求.  相似文献   

13.
首先分析了泡沫沥青的作用机理及影响因素,其次对其配合比进行设计,得到最佳拌合用水量,最后通过室内试验研究泡沫沥青混合料的路用性能,研究结果表明:发泡温度一定时,随着用水量的增加,泡沫沥青的膨胀率增加和半衰期减少,A-70基质沥青的最佳发泡温度为160℃,最佳发泡用水量2.7%;级配改善后泡沫沥青再生混合物的最佳拌合用水量为3.8%;水泥含量为1%~4%时,泡沫沥青再生混合料的抗压强度逐渐增加,增加幅度在12%~20%;泡沫沥青含量为2%~3%时,混合料高温稳定性随着水泥含量的增加逐步提升,泡沫沥青含量为3%~4%时,高温稳定性出现略微的下降。  相似文献   

14.
泡沫温拌沥青技术是将一定比例的水和热沥青同时加入到发泡装置内,冷水遇热沥青急剧气化,体积膨胀形成泡沫温拌沥青。泡沫温拌沥青的粘度大大降低,和易性增强,使得泡沫温拌沥青混凝土可以比常规沥青混凝土降低20~30℃的情况下拌合与施工。通过泡沫温拌沥青性能检测、泡沫温拌沥青混合料配合比设计基础上,结合对泡沫温拌沥青混合料的不同出料温度在高温、低温环境情况下试验段铺筑与试验检测数据的对比分析,研究泡沫温拌技术在工程施工中的适用性,使泡沫温拌技术在工程施工中更具有实用价值和指导意义。  相似文献   

15.
为了解埃索70#石油沥青在泡沫沥青冷再生技术中的应用,在分析泡沫沥青产生原理及发泡特性影响因素的基础上,在试验室进行了泡沫沥青冷再生混合料的设计与性能对比,结果显示:(1)埃索70#石油沥青的发泡温度为160℃,发泡用水量为4. 0%,旧料最佳含水量为6. 2%,最佳沥青用量为2. 0%;(2)通过与普通热拌沥青混合料的性能对比,认为泡沫沥青再生混合料可应用在高速公路沥青路面的基层或下面层;(3)与其他冷再生技术相比,泡沫沥青冷再生技术无须再生添加剂、施工开放交通快,再生混合料强度高、疲劳寿命长、且不产生收缩和反射裂缝。  相似文献   

16.
依托实体工程,研究微发泡型温拌剂对沥青混合料的影响。采用体积指标等效方法,确定沥青混合料中微发泡型温拌剂的质量分数和击实降温幅度,并与表面活性剂类温拌剂进行路用性能对比。试验表明,微发泡型温拌剂的加入有效改善了沥青混合料的施工和易性,击实温度降低20℃时仍可达到目标空隙率,而且在满足混合料高温稳定性能和抗水损害能力的前提下,保障沥青混合料的压实度和劈裂强度。采用热拌温铺技术原理对实际工程进行微发泡型温拌剂应用研究,表明该技术可以延长施工压实的有效时间,保障压实质量和路用性能,具有明显的推广价值及工程实践意义。  相似文献   

17.
通过新型的试验方法对比室内制作的SMA-13和在不同压实温度条件下成型的掺入3%的Sasobit温拌剂下的SMA-13马歇尔试件的一系列体积指标,确定掺入Sasobit温拌剂下SMA-13的室内最佳压实温度范围,进而确定现场摊铺温度为140℃左右;通过比较两种不同混合料的高温性能、低温性能以及水稳性能,试验结表明:掺入3%的Sasobit温拌剂的SMA-13混合料高温性能优于普通的SMA-13混合料,低温与水稳性能略低于普通的SMA-13混合料。  相似文献   

18.
为了研究温拌橡胶沥青的流变特性,制备了符合《公路工程废胎胶粉橡胶沥青》(JT/T798—2011)技术要求的橡胶沥青,进行了粘温关系试验与基本技术指标试验,从降温效果与技术指标影响两方面确定了Sasobit温拌剂的最佳掺量,评价了Sasobit温拌橡胶沥青的高温(60、70℃)、中温(25℃)、低温(5℃~-24℃)宽路用温度域的流变特性。分析结果表明:3%的Sasobit为温拌橡胶沥青的最佳温拌剂掺量;温拌剂Sasobit提高了橡胶沥青的高温稳定性,70℃车辙因子提高了79%,但对橡胶沥青粘韧性没有明显影响;3%掺量的Sasobit降低了橡胶沥青的疲劳性能,25℃疲劳因子提高了22%,但是其温拌橡胶沥青疲劳性能依然优于SBS改性沥青;在中国沥青路面使用性能气候分区标准的冬温区温度以下,随着温度的降低Sasobit温拌橡胶沥青的低温性能逐渐优于SBS改性沥青,-24℃的蠕变劲度为SBS改性沥青的45%,同时3%的Sasobit掺量不会过度影响橡胶沥青的低温性能,-24℃时橡胶沥青蠕变劲度提高了10%。  相似文献   

19.
通过马歇尔标准击实试验确定了不同温拌剂的降温效果,通过路用性能试验研究了不同温拌剂对排水性沥青混合料性能的影响。试验结果表明:温拌剂可以显著降低排水性沥青混合料施工拌和温度;不同温拌剂降低温度的幅度不同;最佳施工拌和温度应通过击实试验确定;温拌剂A对排水性沥青混合料路用性能没有显著影响,而温拌剂B明显提高了排水性沥青混合料的高温稳定性,降低了其水稳定性与低温抗裂性。  相似文献   

20.
为了解决低温地区实体工程中RAP高掺量下路用性能和现场压实温度的问题,针对RAP不同掺量(0%、30%和50%)下温拌再生沥青混合料,通过车辙试验、弯曲试验和冻融劈裂试验及试验掺量的对比,研究聚酯纤维对温拌再生沥青混合料路用性能的影响;通过Superpave试验方法和变温压实试验,以4.0%空隙率为控制指标,研究聚酯纤维对两种RAP掺量(0%、30%)下温拌沥青混合料最佳压实温度的影响。研究结果表明:与不添加纤维相比,聚酯纤维的添加显著改善温拌再生沥青混合料高温稳定性、低温抗裂性和水稳定性,且均满足规范要求;在RAP掺量为0%和30%时,聚酯纤维使温拌沥青混合料最佳压实温度分别提高了9℃和10℃,即聚酯纤维对温拌沥青混合料最佳压实温度影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号