首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vehicle longitudinal control systems such as (commercially available) autonomous Adaptive Cruise Control (ACC) and its more sophisticated variant Cooperative ACC (CACC) could potentially have significant impacts on traffic flow. Accurate models of the dynamic responses of both of these systems are needed to produce realistic predictions of their effects on highway capacity and traffic flow dynamics. This paper describes the development of models of both ACC and CACC control systems that are based on real experimental data. To this end, four production vehicles were equipped with a commercial ACC system and a newly developed CACC controller. The Intelligent Driver Model (IDM) that has been widely used for ACC car-following modeling was also implemented on the production vehicles. These controllers were tested in different traffic situations in order to measure the actual responses of the vehicles. Test results indicate that: (1) the IDM controller when implemented in our experimental test vehicles does not perceptibly follow the speed changes of the preceding vehicle; (2) strings of consecutive ACC vehicles are unstable, amplifying the speed variations of preceding vehicles; and (3) strings of consecutive CACC vehicles overcome these limitations, providing smooth and stable car following responses. Simple but accurate models of the ACC and CACC vehicle following dynamics were derived from the actual measured responses of the vehicles and applied to simulations of some simple multi-vehicle car following scenarios.  相似文献   

2.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

3.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Improper mandatory lane change (MLC) maneuvers in the vicinity of highway off-ramp will jeopardize traffic efficiency and safety. Providing an advance warning for lane change necessity is one of the efficient methods to perform systematic lane change management, which encourages smooth MLC maneuvers occurring at proper locations to mitigate the negative effects of MLC maneuvers on traffic flow nearby off-ramp. However, the state of the art indicates the lack of rigorous methods to optimally locate this advance warning so that the maximum benefit can be obtained. This research is motivated to address this gap. Specifically, the proposed approach considers that the area downstream of the advance warning includes two zones: (i) the green zone whose traffic ensures safe and smooth lane changes without speed deceleration (S-MLC); the start point of the green zone corresponding to the location of the advance warning; (ii) the yellow zone whose traffic leads to rush lane change maneuvers with speed deceleration (D-MLC). An optimization model is proposed to search for the optimal green and yellow zones. Traffic flow theory such as Greenshield model and shock wave analysis are used to analyze the impacts of the S-MLC and D-MLC maneuvers on the traffic delay. A grid search algorithm is applied to solve the optimization model. Numerical experiments conducted on the simulation model developed in Paramics 6.9.3 indicate that the proposed optimization model can identify the optimal location to set the advance MLC warning nearby an off-ramp so that the traffic delay resulting from lane change maneuvers is minimized, and the corresponding capacity drop and traffic oscillation can be efficiently mitigated. Moreover, the experiments validated the consistency of the green and yellow zones obtained in the simulation traffic flow and from the optimization model for a given optimally located MLC advance warning under various traffic regimes. The proposed approach can be implemented by roadside mobile warning facility or on-board GPS for human-driven vehicles, or embedded into lane change aid systems to serve connected and automated vehicles. Thus it will greatly contribute to both literature and engineering practice in lane change management.  相似文献   

5.
Traffic operations for new road layouts are often simulated using microscopic traffic simulation packages. These traffic simulation packages usually simulate traffic on freeways by a combination of a car-following model and a lane change model. The car-following models have gained attention of researchers and are well calibrated versus data. The proposed lane change models are often representations of assumed reasonable behavior, not necessarily corresponding to reality. The current simulation packages apply solely one specific type of model for car-following or lane changing for all vehicles during the simulation. This paper investigates the decision process of lane changing maneuvers for a variety of drivers based on a two-stage test-drive. Participants are asked to take a drive on a freeway in the Netherlands in a camera-equipped vehicle. Afterwards, the drivers are asked to comment on their choices related to lane and speed choice, while watching the video. This paper reveals that different drivers have completely different strategies to choose lanes, and the choices to change lane are related to their speed choice. Four distinct strategies are empirically found. These strategies differ not only in parameter values, as is currently being modeled in most simulation packages, but also in their reasoning. Most remarkably, all drivers perceive their strategy as an obvious behavior and expect all other drivers to drive in a similar way. In addition to the interviews of the participants in the test-drive, 11 people who did not take part in the experiment were interviewed and questioned on lane change decisions. Moreover, the findings of this study have been presented to various groups of audience with different backgrounds (about 150 people). Their comments and feedback on the derived driving strategies have added some value to this study. The findings in this paper form a starting point for developing a novel lane change model which considers four different driving strategies among the drivers on freeway. This is a significant contribution in the area of driving behavior modeling, since the existing microscopic simulators consider only one type of lane change models for all drivers during the simulation. This could lead to significant changes in the way lane changes on freeways are modeled.  相似文献   

6.
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

7.
This work investigates the effect of heavy commercial vehicles on the capacity and overall performance of congested freeway sections. Furthermore, the following behaviors of heavy commercial vehicles and its comparison with passenger cars are presented. Freeways are designed to facilitate the flow of traffic including passenger cars and trucks. The impact of these different vehicle types is not uniform, creating problems in freeway operations and safety particularly under heavy demand with a high proportion of heavy vehicles. There have been very few studies concerned with the traffic behavior and characteristics of heavy vehicles in these situations. This study draws on extensive data collected over a long stretch of freeway using videotaping and surveys at several sites. The collected data were firstly used to study the interaction between heavy vehicles and passenger cars. Through a detailed trajectory analysis, the following behaviors of 120 heavy vehicles were then analyzed to provide a thorough understanding of heavy vehicles‐following behavior mechanism. The results showed a significant difference in the following behavior of heavy vehicles compared with other vehicles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Weaving sections, where a merge and a diverge are in close proximity, are considered as crucial bottlenecks in the highway network. Lane changes happen frequently in such sections, leading to a reduced capacity and the traffic phenomenon known as capacity drop. This paper studies how the emerging automated vehicle technology can improve the operations and increase the capacity of weaving sections. We propose an efficient yet effective multiclass hybrid model that considers two aspects of this technology in scenarios with various penetration rates: (i) the potential to control the desired lane change decisions of automated vehicles, which is represented in a macroscopic manner as the distribution of lane change positions, and (ii) the lower reaction time associated with automated vehicles that can reduce headways and the required gaps for lane changing maneuvers. The proposed model is successfully calibrated and validated with empirical observations from conventional vehicles at a weaving section near the city of Basel, Switzerland. It is able to replicate traffic dynamics in weaving sections including the capacity drop. This model is then applied in a simulation-based optimization framework that searches for the optimal distribution of the desired lane change positions to maximize the capacity of weaving sections. Simulation results show that by optimizing the distribution of the desired lane change positions, the capacity of the studied weaving section can increase up to 15%. The results also indicate that if the reaction time is considered as well, there is an additional combined effect that can further increase the capacity. Overall, the results show the great potential of the automated vehicle technology for increasing the capacity of weaving sections.  相似文献   

9.
Frequent lane-changes in highway merging, diverging, and weaving areas could disrupt traffic flow and, even worse, lead to accidents. In this paper, we propose a simple model for studying bottleneck effects of lane-changing traffic and aggregate traffic dynamics of a roadway with lane-changing areas. Based on the observation that, when changing its lane, a vehicle affects traffic on both its current and target lanes, we propose to capture such lateral interactions by introducing a new lane-changing intensity variable. With a modified fundamental diagram, we are able to study the impacts of lane-changing traffic on overall traffic flow. In addition, the corresponding traffic dynamics can be described with a simple kinematic wave model. For a location-dependent lane-changing intensity variable, we discuss kinematic wave solutions of the Riemann problem of the new model and introduce a supply–demand method for its numerical solutions. With both theoretical and empirical analysis, we demonstrate that lane-changes could have significant bottleneck effects on overall traffic flow. In the future, we will be interested in studying lane-changing intensities for different road geometries, locations, on-ramp/off-ramp flows, as well as traffic conditions. The new modeling framework could be helpful for developing ramp-metering and other lane management strategies to mitigate the bottleneck effects of lane-changes.  相似文献   

10.
We verify that slow speeds in a special-use lane, such as a carpool or bus lane, can be due to both, high demand for that lane and slow speeds in the adjacent regular-use lane. These dual influences are confirmed from months of data collected from all freeway carpool facilities in the San Francisco Bay Area. Additional data indicate that both influences hold: for other types of special-use lanes, including bus lanes; and for other parts of the world.The findings do not bode well for a new US regulation stipulating that most classes of Low-Emitting Vehicles, or LEVs, are to vacate slow-moving carpool lanes. These LEVs invariably constitute small percentages of traffic; e.g. they are only about 1% of the freeway traffic demand in the San Francisco Bay Area. Yet, we show: that relegating some or all of these vehicles to regular-use lanes can significantly add to regular-lane congestion; and that this, in turn, can also be damaging to vehicles that continue to use the carpool lanes. Counterproductive outcomes of this kind are predicted first by applying kinematic wave analysis to a real Bay Area freeway. Its measured data indicate that the site selected for this analysis stands to suffer less from the regulation than will others in the region. Yet, we predict: that the regulation will cause the site’s people-hours and vehicle-hours traveled during the rush to each increase by more than 10%; and that carpool-lane traffic will share in the damages. Real data from the site support these predictions. Further parametric analysis of a hypothetical, but more generic freeway system indicates that these kinds of negative outcomes will be widespread. Constructive ways to amend the new regulation are discussed, as are promising strategies to increase the vehicle speeds in carpool lanes by improving the travel conditions in regular lanes.  相似文献   

11.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

12.
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

13.
Advances in connected and automated vehicle technologies have resulted in new vehicle applications, such as cooperative adaptive cruise control (CACC). Microsimulation models have shown significant increases in capacity and stability due to CACC, but most previous work has relied on microsimulation. To study the effects of CACC on larger networks and with user equilibrium route choice, we incorporate CACC into the link transmission model (LTM) for dynamic network loading. First, we derive the flow-density relationship from the MIXIC car-following model of CACC (at 100% CACC market penetration). The flow-density relationship has an unusual shape; part of the congested regime has an infinite congested wave speed. However, we verify that the flow predictions match observations from MIXIC modeled in VISSIM. Then, we use the flow-density relationship from MIXIC in LTM. Although the independence of separate links restricts the maximum congested wave speed, for common freeway link lengths the congested wave speed is sufficiently high to fit the observed flows from MIXIC. Results on a freeway and regional networks (with CACC-exclusive lanes) indicate that CACC could reduce freeway congestion, but naïve deployment of CACC-exclusive lanes could cause an increase in total system travel time.  相似文献   

14.
One source of vehicle conflict is the freeway weaving section, where a merge and diverge in close proximity require vehicles either entering or exiting the freeway to execute one or more lane changes. Using accident data for a portion of Southern California, we examined accidents that occurred on three types of weaving sections defined in traffic engineering: Type A, where every merging or diverging vehicle must execute one lane change, Type B, where either merging or diverging can be done without changing lanes, and Type C, where one maneuver requires at least two lane changes. We found no difference among these three types in terms of overall accident rates for 55 weaving sections over one year (1998). However, there were significant differences in terms of the types of accidents that occur within these types in terms of severity, and location of the primary collision, the factors causing the accident, and the time period in which the accident is most likely to occur. These differences in aspects of safety lead to implications for traffic engineering improvements.  相似文献   

15.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

16.
Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and absolute string instability, but not convective upstream string instability observed in human-driven traffic and in the ACC model. The control framework and analytical results provide insights into the influences of ACC and C-ACC systems on traffic flow operations.  相似文献   

17.
This paper examines the traffic dynamics underlying a recently observed phenomenon, the so called “sympathy of speeds” whereby a high occupancy vehicle (HOV) lane seemingly exhibits lower vehicular capacity and lower flow at speeds throughout the congested regime compared to the adjacent general purpose (GP) lanes. Unlike previous studies this paper examines a time-of-day HOV lane. During the non-HOV periods the study lane reverts to a GP lane, thereby providing a control condition for the specific lane and location. This work uses the single vehicle passage (svp) method to group vehicle passages before measuring the traffic state and extends the svp to bin vehicles in the study lane based on the relative speed to the adjacent lane. The extended svp method allows the work to also study the impacts during the non-HOV periods when the study lane serves GP vehicles. This work finds that: (1) during the non-HOV periods the study lane exhibited behavior indistinguishable from the adjacent GP lane. (2) The sympathy of speeds persists throughout the day, even when the study lane serves GP vehicles. (3) The relative speed to the adjacent lane provided a better predictor of behavior than whether or not the HOV restriction is active. In short, the car following behavior that gives rise to the sympathy of speeds is unrelated to the HOV restriction per se, persisting under GP operations as well.This dependency on the relative speed in the adjacent lane is an important finding given the fact that most existing car following models assume that the longitudinal acceleration of a following vehicle is strictly a function of the relationship to the leading vehicle in the same lane. Because drivers in general adopt a larger spacing when faced with a high differential in speed between lanes means that car following behavior also depends on the relative speed to the adjacent lane. This fact has likely gone unnoticed to date because generally the conditions that give rise to a differential in speeds between lanes are usually short lived, and thus, do not become apparent in conventional macroscopic data except under exceptional circumstances that include confounding factors like HOV operations.  相似文献   

18.
This paper examines CACC truck platooning on uphill grades. It was found that the design of CT policy should consider the effects of low crawl speeds on significant upgrades. Three simple solutions, which have different impacts on traffic flow efficiency, are proposed. Furthermore, truck platoons, controlled by a state-of-the-art CACC model, become asymptotically unstable beyond some critical grade. The errors are permanent, suggesting that trucks fail to re-engage after the upgrade. This occurs by complex interactions between the CACC control and the bounded acceleration capabilities of trucks. New control concepts are developed to complement the existing control model and achieve asymptotic (and string) stability. The instability mechanisms and new control concepts are not specific to the control model used.  相似文献   

19.
A simple exercise in data analysis showed that, in queued traffic, a well-defined relation exists between the flow on a homogeneous freeway segment and the segment’s vehicle accumulation. The exercise consisted of constructing cumulative vehicle arrival curves to measure the flows and densities on multiple segments of a queued freeway. At this particular site, each interchange enveloped by the queue exhibited a higher on-ramp flow than off-ramp flow and as a consequence, motorists encountered a steady improvement in traffic conditions (e.g., reduced densities and increased speeds) as they traveled from the tail of the queue to the bottleneck. This finding has practical implications for freeway traffic planning and management. Perhaps most notably, it suggests that the first-order hydrodynamic theory of traffic is adequate for describing some of the more relevant features of queue evolution. This and other practical issues are discussed in some detail.  相似文献   

20.
Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40 km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号