首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An integrated approach is suggested for the planning and evaluation of mass transport systems which includes a bus network and LRT/RTS in urban areas. This approach involves a simplified procedure for determining mass transit demand, bus route network generation and evaluation, light or rapid transit corridor identification and its patronage determination in the presence of bus networks. Scheduling of a mass transportation system based on marginal ridership concept is also suggested for a given fleet size. All the three major components (demand estimation, route network generation and scheduling) iterate and interact each other with a feedback mechanism for the desired optimal solution in terms of performance indicators. Necessary interactive software packages for all the above subsystems have been developed.  相似文献   

2.
Fixed-rail metro (or ‘subway’) infrastructure is generally unable to provide access to all parts of the city grid. Consequently, feeder bus lines are an integral component of urban mass transit systems. While passengers prefer a seamless transfer between these two distinct transportation services, each service’s operations are subject to a different set of factors that contribute to metro-bus transfer delay. Previous attempts to understand transfer delay were limited by the availability of tools to measure the time and cost associated with passengers’ transfer experience. This paper uses data from smart card systems, an emerging technology that automatically collects passenger trip data, to understand transfer delay. The primary objective of this study is to use smart card data to derive a reproducible methodology that isolates high priority transfer points between the metro system and its feeder-bus systems. The paper outlines a methodology to identify transfer transactions in the smart card dataset, estimate bus headways without the aid of geographic location information, estimate three components of the total transfer time (walking time, waiting time, and delay time), and isolate high-priority transfer pairs. The paper uses smart card data from Nanjing, China as a case study. The results isolate eight high priority metro-bus transfer pairs in the Nanjing metro system and finally, offers several targeted measures to improve transfer efficiency.  相似文献   

3.
Crew scheduling for bus drivers in large bus agencies is known to be a time‐consuming and cumbersome problem in transit operations planning. This paper investigates a new meta‐heuristics approach for solving real‐world bus‐driver scheduling problems. The drivers' work is represented as a series of successive pieces of work with time windows, and a variable neighborhood search (VNS) algorithm is employed to solve the problem of driver scheduling. Examination of the modeling procedure developed is performed by a case study of two depots of the Beijing Public Transport Group, one of the largest transit companies in the world. The results show that a VNS‐based algorithm can reduce total driver costs by up to 18.1%, implying that the VNS algorithm may be regarded as a good optimization technique to solve the bus‐driver scheduling problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Bus stops are integral elements of a transit system and as such, their efficient inspection and maintenance is required, for proper and attractive transit operations. Nevertheless, spatial dispersion and the extensive number of bus stops, even for mid-size transit systems, complicates scheduling of inspection and maintenance tasks. In this context, the problem of scheduling transit stop inspection and maintenance activities (TSIMP) by a two-stage optimization approach, is formulated and discussed. In particular, the first stage involves districting of the bus stop locations into areas of responsibility for different inspection and maintenance crews (IMCs), while in the second stage, determination of the sequence of bus stops to be visited by an IMC is modelled as a vehicle routing problem. Given the complexity of proposed optimization models, advanced versions of different metaheuristic algorithms (Harmony Search and Ant Colony Optimization) are exploited and assessed as possible options for solving these models. Furthermore, two variants of ACO are implemented herein; one implemented into a CPU parallel computing environment along with an accelerated one by means of general-purpose graphics processing unit (GPGPU) computing. The model and algorithms are applied to the Athens (Greece) bus system, whose extensive number of transit stops (over 7500) offers a real-world test bed for assessing the potential of the proposed modelling approach and solution algorithms. As it was shown for the test example examined, both algorithms managed to achieve optimized solutions for the problem at hand while there were fund robust with respect to their algorithmic parameters. Furthermore, the use of graphics processing units (GPU) managed to reduce of computational time required.  相似文献   

5.
The delay costs of traffic disruptions and congestion and the value of travel time reliability are typically evaluated using single trip scheduling models, which treat the trip in isolation of previous and subsequent trips and activities. In practice, however, when activity scheduling to some extent is flexible, the impact of delay on one trip will depend on the actual and predicted travel time on itself as well as other trips, which is important to consider for long-lasting disturbances and when assessing the value of travel information. In this paper we extend the single trip approach into a two trips chain and activity scheduling model. Preferences are represented as marginal activity utility functions that take scheduling flexibility into account. We analytically derive trip timing optimality conditions, the value of travel time and schedule adjustments in response to travel time increases. We show how the single trip models are special cases of the present model and can be generalized to a setting with trip chains and flexible scheduling. We investigate numerically how the delay cost depends on the delay duration and its distribution on different trips during the day, the accuracy of delay prediction and travel information, and the scheduling flexibility of work hours. The extension of the model framework to more complex schedules is discussed.  相似文献   

6.
This paper deals with the problem of scheduling bus maintenance activities. The scheduling of maintenance activities is an important component in bus transit operations planning process. The other components include network route design, setting timetables, scheduling vehicles, and assignment of drivers. This paper presents a mathematical programming approach to the problem. This approach takes as input a given daily operating schedule for all buses assigned to a depot along with available maintenance resources. It, then, attempts to design daily inspection and maintenance schedules for the buses that are due for inspection so as to minimize the interruptions in the daily bus operating schedule, and maximize the utilization of the maintenance facilities. Three integer programming formulations are presented and different properties of the problem are discussed. Several heuristic methods are presented and tested. Some of these procedures produce very close to optimal solutions very efficiently. In some cases, the computational times required to obtain these solutions are less than 1% of the computational time required for the conventional branch and bound algorithm. Several small examples are offered and the computational results of solving the problem for an actual, 181-bus transit property are reported.  相似文献   

7.
This paper proposes a Continuum Approximation (CA) model for design of a one-way Electrical Vehicle (EV) sharing system that serves a metropolitan area. This model determines the optimal EV sharing station locations and the corresponding EV fleet sizes to minimize the comprehensive system cost, including station construction investment, vehicle charging, transportation and vehicle balancing, under stochastic and dynamic trip demands. This is a very complex problem due to the NP-hard nature of location design, the large number of individual users, and the stochasticity and dynamics of generated trips. Further, the considerable charging time required by EVs distinguishes this problem from traditional car sharing problems where a vehicle is immediately available for pickup after being dropped at a station. We find that the CA approach can overcome these modeling challenges by decomposing the studied area into a number of small neighborhoods that each can be approximated by an Infinite Homogeneous Plane (IHP). We find that the system cost of an IHP is a unimodal function of the station service area size and can be efficiently solved in a sub-linear time by the bisection algorithm. Then integrating the solutions of all IHPs yields an approximate solution to the original heterogeneous area. With numerical experiments, we show that the CA solution is able to estimate the total system cost of the discrete counterpart solution efficiently with good accuracy, even for large-scale heterogeneous problems. This implies that the proposed CA approach is capable of providing a near-optimum solution to the comprehensive design of a practical large-scale EV sharing system. With this model, we also conduct sensitivity analysis to reveal insights into how cost components and system design vary with key parameter values. As far as the author’s knowledge, this study is the first work that addresses design of an EV sharing system considering both longer-term location and fleet size planning and daily vehicle operations. The proposed CA model also extends the CA methodology literature from traditional location problems with stationary demand, single-facility based service to EV sharing problems considering dynamic demands, OD trips, and nonlinear vehicle charging times.  相似文献   

8.
This study provides a large-scale micro-simulation of transportation patterns in a metropolitan area when relying on a system of shared autonomous vehicles (SAVs). The six-county region of Austin, Texas is used for its land development patterns, demographics, networks, and trip tables. The agent-based MATSim toolkit allows modelers to track individual travelers and individual vehicles, with great temporal and spatial detail. MATSim’s algorithms help improve individual travel plans (by changing tour and trip start times, destinations, modes, and routes). Here, the SAV mode requests were simulated through a stochastic process for four possible fare levels: $0.50, $0.75, $1, and $1.25 per trip-mile. These fares resulted in mode splits of 50.9, 12.9, 10.5, and 9.2% of the region’s person-trips, respectively. Mode choice results show longer-distance travelers preferring SAVs to private, human-driven vehicles (HVs)—thanks to the reduced burden of SAV travel (since one does not have to drive the vehicle). For travelers whose households do not own an HV, SAVs (rather than transit, walking and biking) appear preferable for trips under 10 miles, which is the majority of those travelers’ trip-making. It may be difficult for traditional transit services and operators to survive once SAVs become available in regions like Austin, where dedicated rail lines and bus lanes are few. Simulation of SAV fleet operations suggest that higher fare rates allow for greater vehicle replacement (ranging from 5.6 to 7.7 HVs per SAV, assuming that the average SAV serves 17–20 person-trips per day); when fares rise, travel demands shift away from longer trip distances. Empty vehicle miles traveled by the fleet of SAVs ranged from 7.8 to 14.2%, across the scenarios in this study. Implications of mobility and sustainability benefits of SAVs are also discussed in the paper.  相似文献   

9.
Two distinguishable modelling approaches exist for modelling the attitudes of travellers to the unexpected day-to-day variability of travel times. The direct approach sees the extent of travel time variability (TTV) as the variable that travellers react to, whereas the indirect approach claims that TTV effects are fully explained by trip scheduling considerations. Past research has not yet overcome the issue of which of these concepts is preferable, especially for public transport users. In the current paper, factors affecting bus users’ scheduling behaviour and attitudes to TTV are investigated, based on a survey among bus users in the city of York, England. The survey methodology and its Internet-based design are described. The results confirm that the influence of TTV on bus users is best explained indirectly through scheduling considerations. The penalty placed on early arrival to the destination is found similar to the penalty on travel time itself; late arrivals are much more heavily penalised. Since the common treatment of TTV in practice is through models that ignore the effect of lateness and earliness, we also examine how using the simple approach rather than the correct one affects the economic interpretation of TTV; the results reveal a massive bias.  相似文献   

10.
This paper presents a transit simulation model designed to support evaluation of operations, planning and control, especially in the context of Advanced Public Transportation Systems (APTS). Examples of potential applications include frequency determination, evaluation of real-time control strategies for schedule maintenance and assessing the effects of vehicle scheduling on the level of service. Unlike most previous efforts in this area, the simulation model is built on a platform of a mesoscopic traffic simulation model, which allows modeling of the operation dynamics of large-scale transit systems taking into account the stochasticity due to interactions with road traffic. The capabilities of Mezzo as an evaluation tool of transit operations are demonstrated with an application to a real-world high-demand bus line in the Tel-Aviv metropolitan area under various scenarios. The headway distributions at two stops are compared with field observations and show good consistency between simulated and observed data.  相似文献   

11.
We propose a branch-and-price approach for solving the integer multicommodity flow model for the network-level train unit scheduling problem (TUSP). Given a train operator’s fixed timetable and a fleet of train units of different types, the TUSP aims at determining an assignment plan such that each train trip in the timetable is appropriately covered by a single or coupled train units. The TUSP is challenging due to its complex nature. Our branch-and-price approach includes a branching system with multiple branching rules for satisfying real-world requirements that are difficult to realize by linear constraints, such as unit type coupling compatibility relations and locations banned for coupling/decoupling. The approach also benefits from an adaptive node selection method, a column inheritance strategy and a feature of estimated upper bounds with node reservation functions. The branch-and-price solver designed for TUSP is capable of handling instances of up to about 500 train trips. Computational experiments were conducted based on real-world problem instances from First ScotRail. The results are satisfied by rail practitioners and are generally competitive or better than the manual ones.  相似文献   

12.
Vehicle scheduling plays a profound role in public transit planning. Traditional approaches for the Vehicle Scheduling Problem (VSP) are based on a set of predetermined trips in a given timetable. Each trip contains a departure point/time and an arrival point/time whilst the trip time (i.e. the time duration of a trip) is fixed. Based on fixed durations, the resulting schedule is hard to comply with in practice due to the variability of traffic and driving conditions. To enhance the robustness of the schedule to be compiled, the VSP based on stochastic trip times instead of fixed ones is studied. The trip times follow the probability distributions obtained from the data captured by Automatic Vehicle Locating (AVL) systems. A network flow model featuring the stochastic trips is devised to better represent this problem, meanwhile the compatibility of any pair of trips is redefined based on trip time distributions instead of fixed values as traditionally done. A novel probabilistic model of the VSP is proposed with the objectives of minimizing the total cost and maximizing the on-time performance. Experiments show that the probabilistic model may lead to more robust schedules without increasing fleet size.  相似文献   

13.
Energy costs account for an important share of the total costs of urban and suburban bus operators. The purpose of this paper is to expand empirical research on bus transit operation costs and identify the key factors that influence bus energy efficiency of the overall bus fleet of one operator and aid to the management of its resources.We estimate a set of multivariate regression models, using cross-section dataset of 488 bus drivers operating over 92 days in 2010, in 87 routes with different bus typologies, of a transit company operating in the Lisbon’s Metropolitan Area (LMA), Rodoviária de Lisboa, S.A.Our results confirm the existence of influential variables regarding energy efficiency and these are mainly: vehicle type, commercial speed, road grades over 5% and bus routes; and to a lesser extent driving events such as: sudden longitudinal decelerations and excessive engine rotation. The methodology proved to be useful for the bus operator as a decision-support tool for efficiency optimization purpose at the company level.  相似文献   

14.
In certain fleet systems, the environmental impacts of operation are, to some extent, a controllable function of vehicle routing and scheduling decisions. However, little prior work has considered environmental impacts in fleet vehicle routing and scheduling optimization, in particular, where the impacts were assessed systematically utilizing life-cycle impact assessment methodologies such as those described by the Society of Environmental Chemistry and Toxicology. Here a methodology is presented for the joint optimization of cost, service, and life-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand-responsive (paratransit or dial-a-ride) transit system. We demonstrate through simulation that, as a result of our methodology, it is possible to reduce environmental impacts substantially, while increasing operating costs and service delays only slightly.  相似文献   

15.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

16.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   

17.
A bus route is inherently unstable: when the system is uncontrolled, buses fail to maintain their time‐headways and tend to bunch. Several mathematical bus motion models were proposed to reproduce the bus behavior and assess management strategies. However, no work has established how the choice of a model impacts the irregularity of modeled bus systems, that is, the non‐respect of scheduled headways. Because of this gap, a large body of existing works assumes that the ability of these models to reproduce instability comes only from stochasticity, although the link between stochastic inputs and the level of irregularity remains unknown. Moreover, some recognized phenomena such as a change of travel conditions during a day or delays at signalized intersections are ignored. To address these shortcomings, this paper provides an overview of existing dynamic bus‐focused models and proposes a simple way to classify them. Commonly used deterministic and stochastic models are compared, which allows quantifying the relative influence of stochasticity of each model component on outputs. Moreover, we show that a change in the system equilibrium in a full deterministic system can lead to irregularity. Finally, this paper proposes a refinement of travel time models to account for non‐dynamic signals. In presence of traffic signals, we show that a bus system can be self‐regulated. Especially, these insights could help to calibrate bus model inputs to better reproduce real data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The percentage of the population being served by a transit system in a metropolitan region is a key system performance measure but depends heavily on the definition of service area. Observing existing service areas can help identify transit system gaps and redundancies. In the public transit industry, buffers at 400 m (0.25 miles) around bus stops and 800 m (0.5 miles) around rail stations are commonly used to identify the area from which most transit users will access the system by foot. This study uses detailed OD survey information to generate service areas that define walking catchment areas around transit services in Montreal, Canada. The 85th percentile walking distance to bus transit service is found to be around 524 m for home-based trip origins, 1,259 m for home-based commuter rail trip origins. Yet these values are found to vary based on our analysis using two statistical models. Walking distances vary based on route and trip qualities (such as type of transit service, transfers and wait time), as well as personal, household, and neighbourhood characteristics. Accordingly, service areas around transit stations should vary based on the service offered and attributes of the people and places served. The generated service areas derived from the generalized statistical model are then used to identify gaps and redundancies at the system and route level using Montreal region as an example. This study can be of benefit to transport engineers and planners trying to maximize transit service coverage in a region while avoiding oversupply of service.  相似文献   

19.
This paper describes a software system designed to manage the deployment of a fleet of demand-responsive passenger vehicles such as taxis or variably routed buses. Multiple modes of operation are supported both for the fleet and for individual vehicles. Booking requests can be immediate (i.e. with zero notice) or in advance of travel. An initial implementation is chosen for each incoming request, subject to time-window and other constraints, and with an objective of minimising additional travel time or maximising a surrogate for future fleet capacity. This incremental insertion scheme is supplemented by post-insert improvement procedures, a periodically executed steepest-descent improvement procedure applied to the fleet as a whole, and a “rank-homing” heuristic incorporating information about future patterns of demand. A simple objective for trip-insertion and other scheduling operations is based on localised minimisation of travel time, while an alternative incorporating occupancy ratios has a more strategic orientation. Apart from its scheduling functions, the system includes automated vehicle dispatching procedures designed to achieve a favourable combination of customer service and efficiency of vehicle deployment. Provision is made for a variety of contingencies, including travel slower or faster than expected, unexpected vehicle locations, vehicle breakdowns and trip cancellations. Simulation tests indicate that the improvement procedures yield substantial efficiencies over more naı̈ve scheduling methods and that the system will be effective in real-time applications.  相似文献   

20.
Two on-board surveys were conducted to determine how transit riders perceive transfers. The surveys were conducted before and after the imposition of a transfer in the middle of an existing bus route. Results of the surveys showed that riders perceive bus transit trips as significantly worse when the trip requires a transfer, even if transfer time is neglibible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号