首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
    
This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to trajectory data without requiring the information on the underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic streams. Next, we introduce the notion of Cluster Representative Subsequence (CRS), which reflects dense road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis.  相似文献   

2.
    
Origin-destination (OD) pattern estimation is a vital step for traffic simulation applications and active urban traffic management. Many methods have been proposed to estimate OD patterns based on different data sources, such as GPS data and automatic license plate recognition (ALPR) data. These data can be used to identify vehicle IDs and estimate their trajectories by matching vehicles identified by different sensors across the network. OD pattern estimation using ALPR data remains a challenge in real-life applications due to the difficulty in reconstructing vehicle trajectories. This paper proposes an offline method for historical OD pattern estimation based on ALPR data. A particle filter is used to estimate the probability of a vehicle’s trajectory from all possible candidate trajectories. The initial particles are generated by searching potential paths in a pre-determined area based on the time geography theory. Then, the path flow estimation process is conducted through dividing the reconstructed complete trajectories of all detected vehicles into multiple trips. Finally, the OD patterns are estimated by adding up the path flows with the same ODs. The proposed method was implemented on a real-world traffic network in Kunshan, China and verified through a calibrated microscopic traffic simulation model. The results show that the MAPEs of the OD estimation are lower than 19%. Further investigation shows that there exists a minimum required ALPR sampling rate (60% in the test network) for accurately estimating the OD patterns. The findings of this study demonstrate the effectiveness of the proposed method in OD pattern estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号