首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
As electric vehicles (EVs) have gained an increasing market penetration rate, the traffic on urban roads will tend to be a mix of traditional gasoline vehicles (GVs) and EVs. These two types of vehicles have different energy consumption characteristics, especially the high energy efficiency and energy recuperation system of EVs. When GVs and EVs form a platoon that is recognized as an energy-friendly traffic pattern, it is critical to holistically consider the energy consumption characteristics of all vehicles to maximize the energy efficiency benefit of platooning. To tackle this issue, this paper develops an optimal control model as a foundation to provide eco-driving suggestions to the mixed-traffic platoon. The proposed model leverages the promising connected vehicle technology assuming that the speed advisory system can obtain the information on the characteristics of all platoon vehicles. To enhance the model applicability, the study proposes two eco-driving advisory strategies based on the developed optimal control model. One strategy provides the lead vehicle an acceleration profile, while the other provides a set of targeted cruising speeds. The acceleration-based eco-driving advisory strategy is suitable for platoons with an automated leader, and the speed-based advisory strategy is more friendly for platoons with a human-operated leader. Results of numerical experiments demonstrate the significance when the eco-driving advisory system holistically considers energy consumption characteristics of platoon vehicles.  相似文献   

2.
The benefit of eco-driving of electric vehicles (EVs) has been studied with the promising connected vehicle (i.e. V2X) technology in recent years. Whereas, it is still in doubt that how traffic signal control affects EV energy consumption. Therefore, it is necessary to explore the interactions between the traffic signal control and EV energy consumption. This research aims at studying the energy efficiency and traffic mobility of the EV system under V2X environment. An optimization model is proposed to meet both operation and energy efficiency for an EV transportation system with both connected EVs (CEVs) and non-CEVs. For CEVs, a stage-wise approximation model is implemented to provide an optimal speed control strategy. Non-CEVs obey a car-following rule suggested by the well-known Intelligent Driver Model (IDM) to achieve eco-driving. The eco-driving EV system is then integrated with signal control and a bi-objective and multi-stage optimization problem is formulated. For such a large-scale problem, a hybrid intelligent algorithm merging genetic algorithm (GA) and particle swarm optimization (PSO) is implemented. At last, a validation case is performed on an arterial with four intersections with different traffic demands. Results show that cycle-based signal control could improve both traffic mobility and energy saving of the EV system with eco-driving compared to a fixed signal timing plan. The total consumed energy decreases as the CEV penetration rate augments in general.  相似文献   

3.
This research proposed an eco-driving system for an isolated signalized intersection under partially Connected and Automated Vehicles (CAV) environment. This system prioritizes mobility before improving fuel efficiency and optimizes the entire traffic flow by optimizing speed profiles of the connected and automated vehicles. The optimal control problem was solved using Pontryagin’s Minimum Principle. Simulation-based before and after evaluation of the proposed design was conducted. Fuel consumption benefits range from 2.02% to 58.01%. The CO2 emissions benefits range from 1.97% to 33.26%. Throughput benefits are up to 10.80%. The variations are caused by the market penetration rate of connected and automated vehicles and v/c ratio. No adverse effect is observed. Detailed investigation reveals that benefits are significant as long as there is CAV and they grow with CAV’s market penetration rate (MPR) until they level off at about 40% MPR. This indicates that the proposed eco-driving system can be implemented with a low market penetration rate of connected and automated vehicles and could be implemented in a near future. The investigation also reveals that the proposed eco-driving system is able to smooth out the shock wave caused by signal controls and is robust over the impedance from conventional vehicles and randomness of traffic. The proposed system is fast in computation and has great potential for real-time implementation.  相似文献   

4.
Vehicle platooning, a coordinated movement strategy, has been proposed to address a range of current transport challenges such as traffic congestion, road safety, energy consumption and pollution. But in order to form platoons in an ad-hoc manner the vehicles have to ‘speak the same language’, which is in current practice limited to vehicles of particular manufacturers. There is no standard language yet. Also in research, while the current literature focuses on platoon control strategies, intra-platoon communication, or platooning impacts on traffic, the conceptualization of platooning objects and their operations remained unattended. This paper aims to fill this fundamental gap by developing a formal model of platooning concepts. The paper proposes an ontological model of platooning objects and properties and abstract basic building blocks of platoon operations that can then be aggregated to complex platooning behavior. The presented ontological model provides the logical reasoning to support vital decision-making during platoon lifecycles. The ontological model is implemented and demonstrated.  相似文献   

5.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

6.
Automated highway systems (AHS) are intended to increase the throughput and safety of roadways through computer control, communication and sensing. In the “platoon” concept for AHS, vehicles travel on highways in closely spaced groups. To maximize benefits, it is desirable to form platoons that are reasonably large (five or more vehicles), and it is also desirable to ensure that platoons remain intact for considerable distances. This paper develops and evaluates strategies for organizing vehicles into platoons at highway entrances, with the objective of maximizing the distance that platoons stay intact, so that they do not need to be regrouped into new platoons on the highway itself. Fundamentally, this entails grouping vehicles according to their destination. We evaluate various strategies in which vehicles are sorted on entrance ramps, with respect to platoon sizes, throughput and platoon formation time.  相似文献   

7.
In this paper, acceleration-based connected cruise control (CCC) is proposed to increase roadway traffic mobility. CCC is designed to be able to use acceleration signals received from multiple vehicles ahead through wireless vehicle-to-vehicle (V2V) communication. We consider various connectivity structures in heterogeneous platoons comprised of human-driven and CCC vehicles. We show that inserting a few CCC vehicles with appropriately designed gains and delays into the flow, one can stabilize otherwise string unstable vehicle platoons. Exploiting the flexibility of ad-hoc connectivity, CCC can be applied in a large variety of traffic scenarios. Moreover, using acceleration feedback in a selective manner, CCC provides robust performance and remains scalable for large systems of connected vehicles. Our conclusions are verified by simulations at the nonlinear level.  相似文献   

8.
This paper presents a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed in this paper for every HEV, where the higher level and the lower level controller share information with each other and solve two different problems that aim at improving its fuel efficiency. The higher level controller of each HEV is considered to utilize traffic light information, through vehicle to infrastructure (V2I) communication, and state information of the vehicles in its near neighborhood, via vehicle to vehicle (V2V) communication. Apart from that, the higher level controller of each HEV uses the recuperation information from the lower level controller and provides it the optimal velocity profile by solving its problem in a model predictive control framework. Each lower level controller uses adaptive equivalent consumption minimization strategy (ECMS) for following their velocity profiles, obtained from the higher level controller, in a fuel efficient manner. In this paper, the vehicles are modeled in Autonomie software and the simulation results are provided in the paper that shows the effectiveness of the proposed control architecture.  相似文献   

9.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

10.
Various green driving strategies have been proposed to smooth traffic flow and lower pollutant emissions and fuel consumption in stop-and-go traffic. In this paper, we present a control theoretic formulation of distributed, cooperative green driving strategies based on inter-vehicle communications (IVCs). The control variable is the advisory speed limit, which is designed to smooth a following vehicle’s speed profile without changing its average speed. We theoretically analyze the performance of a constant independent and three simple cooperative green driving strategies and present three rules for effective and robust strategies. We then develop a distributed cooperative green driving strategy, in which the advisory speed limit is first independently calculated by each individual vehicle and then averaged among green driving vehicles through IVC. By simulations with Newell’s car-following model and the Comprehensive Modal Emissions Model (CMEM), we demonstrate that such a strategy is effective and robust independently as well as cooperatively for different market penetration rates of IVC-equipped vehicles and communication delays. In particular, even when 5% of the vehicles implement the green driving strategy and the IVC communication delay is 60 s, the fuel consumption can be reduced by up to 15%. Finally we discuss some future extensions.  相似文献   

11.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

12.
This paper presents an empirical investigation into platooning on two-lane two-way highways. The main objective is to better understand this phenomenon that has important implications on traffic performance and safety. Field data from three study sites in the state of Montana were used in this study. Separate investigations were performed to examine the relationships among platoon-related variables, namely; time headway, travel speed, and platoon size. The study confirmed that interaction between successive vehicles in the traffic stream generally diminishes beyond a time headway threshold value that fell in the range of 5–7 seconds. Also, the study revealed that very short headways (less than one second) are more associated with aggressive driving and higher speeds than with slow-moving platoons due to lack of passing opportunities. Further, the study found that amount of impedance to traffic is proportional to the size of platoon as evidenced by the relative difference between mean speed of various size platoons and the mean speed of unimpeded vehicles. The study provided other valuable insights into the platooning phenomenon on two-lane highways that are essential in developing a better understanding of traffic operation on two-lane highways.  相似文献   

13.
This contribution furthers the control framework for driver assistance systems in Part I to cooperative systems, where equipped vehicles can exchange relevant information via vehicle-to-vehicle communication to improve the awareness of the ambient situation (cooperative sensing) and to manoeuvre together under a common goal (cooperative control). To operationalize the cooperative sensing strategy, the framework is applied to the development of a multi-anticipative controller, where an equipped vehicle uses information from its direct predecessor to predict the behaviour of its pre-predecessor. To operationalize the cooperative control strategy, we design cooperative controllers for sequential equipped vehicles in a platoon, where they collaborate to optimise a joint objective. The cooperative control strategy is not restricted to cooperation between equipped vehicles. When followed by a human-driven vehicle, equipped vehicles can still exhibit cooperative behaviour by predicting the behaviour of the human-driven follower, even if the prediction is not perfect.The performance of the proposed controllers are assessed by simulating a platoon of 11 vehicles with reference to the non-cooperative controller proposed in Part I. Evaluations show that the multi-anticipative controller generates smoother behaviour in accelerating phase. By a careful choice of the running cost specification, cooperative controllers lead to smoother decelerating behaviour and more responsive and agile accelerating behaviour compared to the non-cooperative controller. The dynamic characteristics of the proposed controllers provide new insights into the potential impact of cooperative systems on traffic flow operations, particularly at the congestion head and tail.  相似文献   

14.
Connected vehicles will change the modes of future transportation management and organization, especially at intersections. In this paper, we propose a distributed conflict-free cooperation method for multiple connected vehicles at unsignalized intersections. We firstly project the approaching vehicles from different traffic movements into a virtual lane and introduce a conflict-free geometry topology considering the conflict relationship of involved vehicles, thus constructing a virtual platoon. Then we present the modeling of communication topology to describe two modes of information transmission between vehicles. Finally, a distributed controller is designed to stabilize the virtual platoon for conflict-free cooperation at intersections. Numerical simulations validate the effectiveness of this method.  相似文献   

15.
Recent developments of information and communication technologies (ICT) have enabled vehicles to timely communicate with each other through wireless technologies, which will form future (intelligent) traffic systems (ITS) consisting of so-called connected vehicles. Cooperative driving with the connected vehicles is regarded as a promising driving pattern to significantly improve transportation efficiency and traffic safety. Nevertheless, unreliable vehicular communications also introduce packet loss and transmission delay when vehicular kinetic information or control commands are disseminated among vehicles, which brings more challenges in the system modeling and optimization. Currently, no data has been yet available for the calibration and validation of a model for ITS, and most research has been only conducted for a theoretical point of view. Along this line, this paper focuses on the (theoretical) development of a more general (microscopic) traffic model which enables the cooperative driving behavior via a so-called inter-vehicle communication (IVC). To this end, we design a consensus-based controller for the cooperative driving system (CDS) considering (intelligent) traffic flow that consists of many platoons moving together. More specifically, the IEEE 802.11p, the de facto vehicular networking standard required to support ITS applications, is selected as the IVC protocols of the CDS, in order to investigate how the vehicular communications affect the features of intelligent traffic flow. This study essentially explores the relationship between IVC and cooperative driving, which can be exploited as the reference for the CDS optimization and design.  相似文献   

16.
Connected Vehicles (CV) equipped with a Speed Advisory System (SAS) can obtain and utilize upcoming traffic signal information to manage their speed in advance, lower fuel consumption, and improve ride comfort by reducing idling at red lights. In this paper, a SAS for pre-timed traffic signals is proposed and the fuel minimal driving strategy is obtained as an analytical solution to a fuel consumption minimization problem. We show that the minimal fuel driving strategy may go against intuition of some people; in that it alternates between periods of maximum acceleration, engine shut down, and sometimes constant speed, known in optimal control as bang-singular-bang control. After presenting this analytical solution to the fuel minimization problem, we employ a sub-optimal solution such that drivability is not sacrificed and show fuel economy still improves significantly. Moreover this paper evaluates the influence of vehicles with SAS on the entire arterial traffic in micro-simulations. The results show that SAS-equipped vehicles not only improve their own fuel economy, but also benefit other conventional vehicles and the fleet fuel consumption decreases with the increment of percentage of SAS-equipped vehicles. We show that this improvement in fuel economy is achieved with a little compromise in average traffic flow and travel time.  相似文献   

17.
Fuel consumption or pollutant emissions can be assessed by coupling a microscopic traffic flow model with an instantaneous emission model. Traffic models are usually calibrated using goodness of fit indicators related to the traffic behavior. Thus, this paper investigates how such a calibration influences the accuracy of fuel consumption and NOx and PM estimations. Two traffic models are investigated: Newell and Gipps. It appears that the Gipps model provides the closest simulated trajectories when compared to real ones. Interestingly, a reverse ranking is observed for fuel consumption, NOx and PM emissions. For both models, the emissions of single vehicles are very sensitive to the calibration. This is confirmed by a global sensitivity analysis of the Gipps model that shows that non-optimal parameters significantly increase the variance of the outputs. Fortunately, this is no longer the case when emissions are calculated for a group of many vehicles. Indeed, the mean errors for platoons are close to 10% for the Gipps model and always lower than 4% for the Newell model. Another interesting property is that optimal parameters for each vehicle can be replaced by the mean values with no discrepancy for the Newell model and low discrepancies for the Gipps model when calculating the different emission outputs. Finally, this study presents preliminary results that show that multi-objective calibration methods are certainly the best direction for future works on the Gipps model. Indeed, the accuracy of vehicle emissions can be highly improved with negligible counterparts on the traffic model accuracy.  相似文献   

18.
This article proposes a macroscopic traffic control strategy to reduce fuel consumption of vehicles on highways. By implementing Greenshields fundamental diagram, the solution to Moskowitz equations is expressed as linear functions with respect to vehicle inflow and outflow, which leads to generation of a linear traffic flow model. In addition, we build a quadratic cost function in terms of vehicle volume to estimate fuel consumption rate based on COPERT model. A convex quadratic optimization problem is then formulated to generate energy-efficient traffic control decisions in real-time. Simulation results demonstrate significant reduction of fuel consumption on testing highway sections under peak traffic demands of busy hours.  相似文献   

19.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

20.
Vehicular traffic congestion in a vehicle-to-vehicle (V2V) communication environment can lead to congestion effects for information flow propagation. Such congestion effects can impact whether a specific information packet of interest can reach a desired location, and if so, in a timely manner to influence the traffic system performance. Motivated by the usefulness and timeliness of information propagation, this paper aims to characterize the information flow propagation wave (IFPW) for an information packet in a congested V2V communication environment under an information relay control strategy. This strategy seeks to exclude information that is dated in the communication buffer under a first-in, first-out queue discipline, from being relayed if the information flow regime is congested. It trades off the need to enable the dissemination of every information packet as far as possible, against the congestion effects that accrue because of the presence of multiple information packets. A macroscopic two-layer model is proposed to characterize the IFPW. The upper layer is formulated as integro-differential equations to characterize the information dissemination in space and time under this control strategy. The lower layer adopts the Lighthill-Whitham-Richards model to capture the traffic flow dynamics. Based on the upper layer model, a necessary condition is derived which quantifies the expected time length that needs to be reserved for broadcasting the information packet of interest so as to ensure the formation of an IFPW under a given density of V2V-equipped vehicles. When the necessary condition is satisfied under homogeneous conditions, it is shown that the information packet can be propagated at an asymptotic speed whose value can be derived analytically. Besides, under the proposed control strategy, only a proportion of vehicles (labeled asymptotic density of informed vehicles) can receive the specific information packet, which can be estimated by solving a nonlinear equation. The asymptotic IFPW speed, the asymptotic density of informed vehicles, and the necessary condition for the IFPW, help in evaluating the timeliness of information propagation and the influence of traffic dynamics on information propagation. In addition, the proposed model can be used to numerically estimate the IFPW speed for heterogeneous conditions, which can aid in the design of traffic management strategies built upon the timely propagation of information through V2V communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号