首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speed variations are considered as an alternative for reducing fuel consumption during the use phase of passenger cars. It explores vehicle engine operating zones with lower fuel consumption, thus making possible a reduction in fuel consumption when compared to constant speed operation. In this paper, we present an evaluation of two conditions of speed variations: 50–70 km/h and 90–110 km/h using numerical simulations and controlled tests. The controlled tests performed on a test track by a professional pilot show that a reduction in fuel consumption is achievable with a conventional gasoline passenger car, with no adaptations for realizing speed variations. Numerical simulations based on a backward quasi-static powertrain model are used to evaluate the potential of speed variations for reducing fuel consumption in other speed variation conditions. When deceleration is performed with gear in neutral position, simulations show that speed variations are always correlated to a lower fuel consumption. This was suspected through previous numerical tests or evaluation on test bench but not in controlled tests conditions.  相似文献   

2.
Energy-efficient operation of rail vehicles   总被引:1,自引:0,他引:1  
This paper describes an analytical process that computes the optimal operating successions of a rail vehicle to minimize energy consumption. Rising energy prices and environmental concerns have made energy conservation a high priority for transportation operations. The cost of energy consumption makes up a large portion of the Operation and Maintenance (O&M) costs of transit especially rail transit systems. Energy conservation or reduction in energy cost may be one of the effective ways to reduce transit operating cost, therefore improve the efficiency of transit operations.From a theoretical point of view, the problem of energy efficient train control can be formulated as one of the functions of Optimal Control Theory. However, the classic numerical optimization methods such as discrete method of optimum programming are too slow to be used in an on-board computer even with the much improved computation power, today. The contribution of this particular research is the analytical solution that gives the sequence of optimal controls and equations to find the control change points. As a result, a calculation algorithm and a computer program for energy efficient train control has been developed. This program is also capable of developing energy efficient operating schedules by optimizing distributions of running time for an entire route or any part of rail systems.We see the major application of the proposed algorithms in fully or partially automated Train Control Systems. The modern train control systems, often referred as “positive” train control (PTC), have collected a large amount of information to ensure safety of train operations. The same data can be utilized to compute the optimum controls on-board to minimize energy consumption based on the algorithms proposed in this paper. Most of the input data, such as track plan, track profile, traction and braking characteristics, speed limits and required trip time are located in an on-board database and/or they can be transmitted via radio link to be processed by the proposed algorithm and program.  相似文献   

3.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   

4.
In this study a hydrogen powered fuel cell hybrid bus is optimized in terms of the powertrain components and in terms of the energy management strategy. Firstly the vehicle is optimized aiming to minimize the cost of its powertrain components, in an official driving cycle. The optimization variables in powertrain component design are different models and sizes of fuel cells, of electric motors and controllers, and batteries. After the component design, an energy management strategy (EMS) optimization is performed in the official driving cycle and in two real measured driving cycles, aiming to minimize the fuel consumption. The EMS optimization is based on the control of the battery’s state-of-charge. The real driving cycles are representative of bus driving in urban routes within Lisbon and Oporto Portuguese cities. A real-coded genetic algorithm is developed to perform the optimization, and linked with the vehicle simulation software ADVISOR. The trade-off between cost increase and fuel consumption reduction is discussed in the lifetime of the designed bus and compared to a conventional diesel bus. Although the cost of the optimized hybrid powertrain (62,230 €) achieves 9 times the cost of a conventional diesel bus, the improved efficiency of such powertrain achieved 36% and 34% of lower energy consumption for the real driving cycles, OportoDC and LisbonDC, which can originate savings of around 0.43 €/km and 0.37 €/km respectively. The optimization methodology presented in this work, aside being an offline method, demonstrated great improvements in performance and energy consumption in real driving cycles, and can be a great advantage in the design of a hybrid vehicle.  相似文献   

5.
在碳排放实验的基础上,文章研究了CO2排放比例与行车速度之间的关系,并提出最佳碳排放行驶车速区间这一概念。文章结合前人提出的油耗与车速模型,建立了高速公路最优车速区间的计算模型,车辆在此区间上行驶时,油耗低并且燃油充分,即CO2排放比例高。利用面积法确定了最优行驶车速区间的计算方法,求得了这一车速区间,从而达到经济效益与社会环境效益的最大化,同时也能够为高速公路的运营管理提供理论支撑。  相似文献   

6.
Connected Vehicles (CV) equipped with a Speed Advisory System (SAS) can obtain and utilize upcoming traffic signal information to manage their speed in advance, lower fuel consumption, and improve ride comfort by reducing idling at red lights. In this paper, a SAS for pre-timed traffic signals is proposed and the fuel minimal driving strategy is obtained as an analytical solution to a fuel consumption minimization problem. We show that the minimal fuel driving strategy may go against intuition of some people; in that it alternates between periods of maximum acceleration, engine shut down, and sometimes constant speed, known in optimal control as bang-singular-bang control. After presenting this analytical solution to the fuel minimization problem, we employ a sub-optimal solution such that drivability is not sacrificed and show fuel economy still improves significantly. Moreover this paper evaluates the influence of vehicles with SAS on the entire arterial traffic in micro-simulations. The results show that SAS-equipped vehicles not only improve their own fuel economy, but also benefit other conventional vehicles and the fleet fuel consumption decreases with the increment of percentage of SAS-equipped vehicles. We show that this improvement in fuel economy is achieved with a little compromise in average traffic flow and travel time.  相似文献   

7.
在台架上对不同冷却液温度下发动机性能测试的基础上,分析了温度对发动机基本性能影响。基于转速和负荷,给出最优目标温度Map图并进行整车油耗仿真计算。结果表明,冷却液温度对发动机低速工况下动力性和经济性有较大影响;与装配蜡式节温器的整车相比,整车采用优化后的水温Map将会使综合油耗降低1%左右。  相似文献   

8.
Vehicle speed trajectory significantly impacts fuel consumption and greenhouse gas emissions, especially for trips on signalized arterials. Although a large amount of research has been conducted aiming at providing optimal speed advisory to drivers, impacts from queues at intersections are not considered. Ignoring the constraints induced by queues could result in suboptimal or infeasible solutions. In this study, a multi-stage optimal control formulation is proposed to obtain the optimal vehicle trajectory on signalized arterials, where both vehicle queue and traffic light status are considered. To facilitate the real-time update of the optimal speed trajectory, a constrained optimization model is proposed as an approximation approach, which can be solved much quicker. Numerical examples demonstrate the effectiveness of the proposed optimal control model and the solution efficiency of the proposed approach.  相似文献   

9.
Reduction of greenhouse gas emission and fuel consumption as one of the main goals of automotive industry leading to the development hybrid vehicles. The objective of this paper is to investigate the energy management system and control strategies effect on fuel consumption, air pollution and performance of hybrid vehicles in various driving cycles. In order to simulate the hybrid vehicle, the combined feedback–feedforward architecture of the power-split hybrid electric vehicle based on Toyota Prius configuration is modeled, together with necessary dynamic features of subsystem or components in ADVISOR. Multi input fuzzy logic controller developed for energy management controller to improve the fuel economy of a power-split hybrid electric vehicle with contrast to conventional Toyota Prius Hybrid rule-based controller. Then, effects of battery’s initial state of charge, driving cycles and road grade investigated on hybrid vehicle performance to evaluate fuel consumption and pollution emissions. The simulation results represent the effectiveness and applicability of the proposed control strategy. Also, results indicate that proposed controller is reduced fuel consumption in real and modal driving cycles about 21% and 6% respectively.  相似文献   

10.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   

11.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   

12.
The quest for more fuel-efficient vehicles is being driven by the increasing price of oil. Hybrid electric powertrains have established a presence in the marketplace primarily based on the promise of fuel savings through the use of an electric motor in place of the internal combustion engine during different stages of driving. However, these fuel savings associated with hybrid vehicle operation come at the tradeoff of a significantly increased initial vehicle cost due to the increased complexity of the powertrain. On the other hand, telematics-enabled vehicles may use a relatively cheap sensor network to develop information about the traffic environment in which they are operating, and subsequently adjust their drive cycle to improve fuel economy based on this information – thereby representing ‘intelligent’ use of existing powertrain technology to reduce fuel consumption. In this paper, hybrid and intelligent technologies using different amounts of traffic flow information are compared in terms of fuel economy over common urban drive cycles. In order to develop a fair comparison between the technologies, an optimal (for urban driving) hybrid vehicle that matches the performance characteristics of the baseline intelligent vehicle is used. The fuel economy of the optimal hybrid is found to have an average of 20% improvement relative to the baseline vehicle across three different urban drive cycles. Feedforward information about traffic flow supplied by telematics capability is then used to develop alternative driving cycles firstly under the assumption there are no constraints on the intelligent vehicle’s path, and then taking into account in the presence of ‘un-intelligent’ vehicles on the road. It is observed that with telematic capability, the fuel economy improvements equal that achievable with a hybrid configuration with as little as 7 s traffic look-ahead capability, and can be as great as 33% improvement relative to the un-intelligent baseline drivetrain. As a final investigation, the two technologies are combined and the potential for using feedforward information from a sensor network with a hybrid drivetrain is discussed.  相似文献   

13.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

14.
This work investigates the energy factors for fuel conversion from the analysis of brake specific fuel consumption (BSFC) maps of a sample of 15 engines, representative of 75% of current models available in the Brazilian market. The method also employs the engine driving patterns of power output versus crankshaft speed obtained from bench dynamometer tests. The energy factors obtained from the engine analysis was validated against experiments carried out with two production vehicles in laboratory tests following the 1975 US Federal Test Procedure (FTP-75) procedure and road tests following 16 different urban and highway routes. The fuels used in the tests were hydrous ethanol (E100, 6 v/v % water) and a blend of 22 v/v % anhydrous ethanol and 78 v/v % gasoline (E22). The energy factors found from the 3D engine BSFC map analysis were higher than those obtained from the Willans line, currently adopted as a standard, by 52% for E22 and 57% for E100. The results from the 3D engine BFSC maps and the first vehicle following the FTP-75 cycle and 15 road routes were similar, also close to the results from the second vehicle, qualifying them to be representative of modern flexible fuel spark ignition engines and vehicles.  相似文献   

15.
This research proposes an optimal controller to improve fuel efficiency for a vehicle equipped with automatic transmission traveling on rolling terrain without the presence of a close preceding vehicle. Vehicle acceleration and transmission gear position are optimized simultaneously to achieve a better fuel efficiency. This research leverages the emerging Connected Vehicle technology and utilizes present and future information—such as real-time dynamic speed limit, vehicle speed, location and road topography—as optimization input. The optimal control is obtained using the Relaxed Pontryagin’s Minimum Principle. The benefit of the proposed optimal controller is significant compared to the regular cruise control and other eco-drive systems. It varies with the hill length, grade, and the number of available gear positions. It ranges from an increased fuel saving of 18–28% for vehicles with four-speed transmission and 25–45% for vehicles with six-speed transmission. The computational time for the optimization is 1.0–2.1 s for the four-speed vehicle and 1.8–3.9 s for the six-speed vehicle, given a 50 s optimization time horizon and 0.1 s time step. The proposed controller can potentially be used in real-time.  相似文献   

16.
The present work compares, on a fundamental basis, the performance and emissions of a diesel-engined large van running on eight legislated driving cycles, namely the European NEDC, the U.S. FTP-75, HFET, US06, LA-92 and NYCC, the Japanese JC08 and the Worldwide WLTC 3-2. It aims to identify differences and similarities between various influential driving cycles valid in the world, and correlate important cycle metrics with vehicle exhaust emissions. The results derive from a computational code based on an engine mapping approach, with experimentally derived correction coefficients applied to account for transient discrepancies; the code is coupled to a comprehensive vehicle model. Soot as well as nitrogen monoxide are the examined pollutants. Only the driving cycle schedule is under investigation in this work, and not the whole test procedure, in order to identify vehicle speed (transient) effects of the individual cycles only. The recently developed WLTC 3-2 is the cycle with a very broad and at the same time dense coverage of the vehicle’s/engine’s operating activity, being thus particularly representative of ‘average’ real-world driving. Even broader is the distribution of the US06, whereas particularly thin and narrow that of the modal NEDC. It is also revealed that the more transient cycles, e.g. the NYCC or the US06, are also the ones with the highest amount of engine-out pollutant emissions and energy consumption. Relative positive acceleration and stops per km are found to correlate very well with energy and fuel consumption and all emitted pollutants.  相似文献   

17.
Various green driving strategies have been proposed to smooth traffic flow and lower pollutant emissions and fuel consumption in stop-and-go traffic. In this paper, we present a control theoretic formulation of distributed, cooperative green driving strategies based on inter-vehicle communications (IVCs). The control variable is the advisory speed limit, which is designed to smooth a following vehicle’s speed profile without changing its average speed. We theoretically analyze the performance of a constant independent and three simple cooperative green driving strategies and present three rules for effective and robust strategies. We then develop a distributed cooperative green driving strategy, in which the advisory speed limit is first independently calculated by each individual vehicle and then averaged among green driving vehicles through IVC. By simulations with Newell’s car-following model and the Comprehensive Modal Emissions Model (CMEM), we demonstrate that such a strategy is effective and robust independently as well as cooperatively for different market penetration rates of IVC-equipped vehicles and communication delays. In particular, even when 5% of the vehicles implement the green driving strategy and the IVC communication delay is 60 s, the fuel consumption can be reduced by up to 15%. Finally we discuss some future extensions.  相似文献   

18.
In this paper the long-term impact of an eco-driving training course is evaluated by monitoring driving behavior and fuel consumption for several months before and after the course. Cars were equipped with an on-board logging device that records the position and speed of the vehicle using GPS tracking as well as real time as electronic engine data extracted from the controller area network. The data includes mileage, number of revolutions per minute, position of the accelerator pedal, and instantaneous fuel consumption. It was gathered over a period of 10 months for 10 drivers during real-life conditions thus enabling an individual drive style analysis. The average fuel consumption four months after the course fell by 5.8%. Most drivers showed an immediate improvement in fuel consumption that was stable over time, but some tended to fall back into their original driving habits.  相似文献   

19.
This paper provides a globally optimal solution to an important problem: given a real-world route, what is the most energy-efficient way to drive a vehicle from the origin to the destination within a certain period of time. Along the route, there may be multiple stop signs, traffic lights, turns and curved segments, roads with different grades and speed limits, and even leading vehicles with pre-known speed profiles. Most of such route information and features are actually constraints to the optimal vehicle speed control problem, but these constraints are described in two different domains. The most important concept in solving this problem is to convert the distance-domain route constraints to some time-domain state and input constraints that can be handled by optimization methods such as dynamic programming (DP). Multiple techniques including cost-to-go function interpolation and parallel computing are used to reduce the computation of DP and make the problem solvable within a reasonable amount of time on a personal computer.  相似文献   

20.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号