首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimum-cost flow problem. It can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections. A mixed-integer programming solver is used to derive optimal routing plans for a sample network. Manual capacity analysis and microscopic traffic simulation are used to compare the relative efficiency of the plans. An application is presented for Salt Lake City, Utah.  相似文献   

2.
Displaced left-turn (DLT) intersections that resolve the conflict between left-turn and opposing-through movements at the pre-signal are probably the most extensively used innovative intersection designs. The DLT intersection concept can be extended to ten different types according to the location of the left-turn transition area, the number of DLT approaches, and the possible setting of the bypass right-turn lane. This paper presents a generalized lane-based optimization model for the integrated design of DLT intersection types, lane markings, the length of the displaced left-turn lane, and the signal timings. The optimization is formulated as a mixed-integer non-linear program. This program is further transformed to a series of mixed-integer linear programming problems that can be solved by the standard branch-and-bound technique. Results from extensive numerical analyses reveal the effectiveness of the proposed method, as well as the promising property of assisting transportation professionals in the proper selection of DLT intersection types, and the design of geometric layout and signal timings.  相似文献   

3.
An increasing number of Intelligent Transportation System (ITS) applications require high accurate vehicle positioning, e.g., positioning at the lane-level. This requirement motives the development of modeling the road network at the lane-level. In this paper we propose a novel lane-level road network model. It can be considered an improvement to existing models in its capability of representing the road and intersection details at the lane-level in a uniform and precise way. As a result, the model can guarantee the global continuity for arbitrary map route, which better approximates the real vehicle trajectory. In addition, the map construction algorithms are also developed. Following the proposed methods, the lane parameters can be extracted efficiently under flexible precision requirement, and intersections with varying appearances can be precisely modeled with limited extra data. Experiments were performed to verify the proposed model in representing the lane-level geometrical and topological details of an urban area of Milan. The results also demonstrate the effectiveness of the map construction methods.  相似文献   

4.
A variety of sensor technologies, such as loop detectors, traffic cameras, and radar have been developed for real-time traffic monitoring at intersections most of which are limited to providing link traffic information with few being capable of detecting turning movements. Accurate real-time information on turning movement counts at signalized intersections is a critical requirement for applications such as adaptive traffic signal control. Several attempts have been made in the past to develop algorithms for inferring turning movements at intersections from entry and exit counts; however, the estimation quality of these algorithms varies considerably. This paper introduces a method to improve accuracy and robustness of turning movement estimation at signalized intersections. The new algorithm makes use of signal phase status to minimize the underlying estimation ambiguity. A case study was conducted based on turning movement data obtained from a four-leg signalized intersection to evaluate the performance of the proposed method and compare it with two other existing well-known estimation methods. The results show that the algorithm is accurate, robust and fairly straightforward for real world implementation.  相似文献   

5.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

6.
To guarantee the road safety by avoiding collisions at the intersections is one of the major tasks of intelligent transportation systems (ITSs), which contributes to the minimal fatalities and property loss in crashes. This paper proposes an effective algorithm for infrastructure-cooperative intersection accident pre-warning system with the aid of vehicular communications. The proposed algorithm realizes accurate and efficient collision avoidances through five steps, i.e., defining variable, reasoning the vehicles evolution state, verifying safe driving behavior, assessing risk, and making decision. The critical factors are theoretically analyzed, and a vehicle state evolution model based on the Dynamic Bayesian Networks (DBNs) is established. The efficient risk assessment method based on identifying the dangerous driving behavior at intersection and different collision avoidance strategies are proposed according to the actual situation. Finally, extensive simulations are carried out to verify the performance of the proposal, and simulation results show that the proposed algorithm can effectively detect risk and accurately migrate the collision.  相似文献   

7.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
为优化城市道路交通信号控制方法,本文结合交通信号控制系统建设发展现状,分析当前各大城市交通信号控制系统普遍存在的问题,立足于互联网环境下的浮动车数据,提出基于互联网平台大数据的交通信号控制辅助优化机制。研究发现可利用互联网路口拥堵报警数据及时有效发现问题路口,利用路段拥堵指数及路口交通流参数变化趋势辅助评估配时方案的优化效果,并通过成都市应用实例证明该机制适用于当前交通控制场景需求,可有效辅助交通信号优化工作,是传统交通模式向真正智能交通模式过渡的阶梯。  相似文献   

9.
平面交叉口是交通系统中极易发生拥堵的地方,运用先进的仿真软件VISSIM对交叉口进行改善设计具有较强的优势。文章在分析VIS-SIM仿真软件原理的基础上,提出了平面交叉口的改善方法,并以兰州市建宁路与宝石花路交叉口为例进行了交叉口改善与仿真分析。研究结论对城市平面交叉口改善设计具有一定的借鉴意义。  相似文献   

10.
Road traffic noise models are fundamental tools for designing and implementing appropriate prevention plans to minimize and control noise levels in urban areas. The objective of this study is to develop a traffic noise model to simulate the average equivalent sound pressure level at road intersections based on traffic flow and site characteristics, in the city of Cartagena de Indias (Cartagena), Colombia. Motorcycles are included as an additional vehicle category since they represent more than 30% of the total traffic flow and a distinctive source of noise that needs to be characterized. Noise measurements are collected using a sound level meter Type II. The data analysis leads to the development of noise maps and a general mathematical model for the city of Cartagena, Colombia, which correlates the sound levels as a function of vehicle flow within road intersections. The highest noise levels were 79.7 dB(A) for the road intersection María Auxiliadora during the week (business days) and 77.7 dB(A) for the road intersection India Catalina during weekends (non-business days). Although traffic and noise are naturally related, the intersections with higher vehicle flow did not have the highest noise levels. The roadway noise for these intersections in the city of Cartagena exceeds current limit standards. The roadway noise model is able to satisfactorily predict noise emissions for road intersections in the city of Cartagena, Colombia.  相似文献   

11.
城市平面交叉口是城市交通冲突和事故频繁发生的地点。文章针对城市道路平面交叉口的交通安全现状,分析了平面交叉口的安全影响因素,提出引入事故率和冲突率为评价指标,建立了灰色理论评价方法,为城市道路平面交叉口的安全治理提供理论支持。  相似文献   

12.
Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SSRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.  相似文献   

13.
This article describes a novel approach for the binary classification of two‐wheeler road users in a dense mixed traffic intersection. The classification is a supervised procedure to differentiate between motorized and non‐motorized (human‐powered) bikes. Road users were first detected and tracked using object recognition methods. Classification features were then selected from the collected trajectories. The features include maximum speed, cadence frequency in addition to acceleration‐based parameters. Experiments were conducted on a video data set from Shanghai, China, where cyclists as well as motorcycles tend to share the main road facilities. A sensitivity analysis was performed to assess the quality of the selected features in improving the accuracy of the classification. A performance analysis demonstrated the robustness of the proposed classification method with a correct classification rate of up to 93%. This research contributes to the literature of automated data collection and can benefit the applications in many transportation‐related fields such as shared space facility planning, simulation models for two‐wheelers, and behavior analysis and road safety studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Turning vehicle volumes at signalized intersections are critical inputs for various transportation studies such as level of service, signal timing, and traffic safety analysis. There are various types of detectors installed at signalized intersections for control and operation. These detectors have the potential of producing volume estimates. However, it is quite a challenge to use such detectors for conducting turning movement counts in shared lanes. The purpose of this paper was to provide three methods to estimate turning movement proportions in shared lanes. These methods are characterized as flow characteristics (FC), volume and queue (VQ) length, and network equilibrium (NE). FC and VQ methods are based on the geometry of an intersection and behavior of drivers. The NE method does not depend on these factors and is purely based on detector counts from the study intersection and the downstream intersection. These methods were tested using regression and genetic programming (GP). It was found that the hourly average error ranged between 4 and 27% using linear regression and 1 to 15% using GP. A general conclusion was that the proposed methods have the potential of being applied to locations where appropriate detectors are installed for obtaining the required data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In recent years, red light cameras (RLCs) have been installed at many signalized intersections. The main reason behind installing RLCs is to reduce intersection‐related accidents caused because of a driver's behavior to cross the intersection when the signal turns red. By nature, if the driver is aware of the presence of RLC his or her driving behavior is bound to change. This behavioral change, however, may be intentional or unintentional. This may influence the utilization of yellow intervals resulting in a possible increase in dilemma zone, which in turn, may reduce the service capacity of the intersection. To accurately capture this capacity reduction, we present a probabilistic approach to modify the saturation flow rate formula in the Highway Capacity Manual that is currently used to calculate the capacity of signalized intersections. We introduce a new factor in the saturation flow rate calculation called red light reduction factor, to account for the capacity reduction owing to RLCs. Using field data from Baltimore, Maryland, we establish a relationship for the red light reduction factor. We then show that capacity of RLC‐equipped intersections is generally lower than that without RLCs. Although the percentage reduction in capacity of a single intersection may not seem significant, the cumulative impact of such reduction in a heavily traveled road network may be quite significant, resulting in significant loss in travel time. In future works, the systemwide capacity reduction owing to the presence of RLCs can be studied in congested transportation networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
License plate recognition (LPR) data are emerging data sources that provide rich information in estimating the traffic conditions of urban arterials. While large-scale LPR system is not common in US, last few years have seen rapid developments and implementations in many other parts of world (e.g. China, Thailand and Middle East). Due to privacy issues, LPR data are seldom available to research communities. However, when available, this data source can be valuable in estimating real-time operational metrics in transportation systems. This paper proposes a lane-based real-time queue length estimation model using the license plate recognition (LPR) data. In the model, an interpolation method based on Gaussian process is developed to reconstruct the equivalent cumulative arrival–departure curve for each lane. The missing information for unrecognized or unmatched vehicles is obtained from the reconstructed arrival curve. With the complete arrival and departure information, a car-following based simulation scheme is applied to estimate the real-time queue length for each lane. The proposed model is validated using ground truth information of the maximum queue lengths from the city of Langfang in China. The results show that the model can capture the variations in queue lengths in the ground truth data, and the maximum queue length for each signal cycle can be estimated with a reasonable accuracy. The estimated queue length information using the proposed model can serve as a useful performance metric for various real-time traffic control applications.  相似文献   

17.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

18.
ABSTRACT

Cities are promoting bicycling for transportation as an antidote to increased traffic congestion, obesity and related health issues, and air pollution. However, both research and practice have been stalled by lack of data on bicycling volumes, safety, infrastructure, and public attitudes. New technologies such as GPS-enabled smartphones, crowdsourcing tools, and social media are changing the potential sources for bicycling data. However, many of the developments are coming from data science and it can be difficult evaluate the strengths and limitations of crowdsourced data. In this narrative review we provide an overview and critique of crowdsourced data that are being used to fill gaps and advance bicycling behaviour and safety knowledge. We assess crowdsourced data used to map ridership (fitness, bike share, and GPS/accelerometer data), assess safety (web-map tools), map infrastructure (OpenStreetMap), and track attitudes (social media). For each category of data, we discuss the challenges and opportunities they offer for researchers and practitioners. Fitness app data can be used to model spatial variation in bicycling ridership volumes, and GPS/accelerometer data offer new potential to characterise route choice and origin-destination of bicycling trips; however, working with these data requires a high level of training in data science. New sources of safety and near miss data can be used to address underreporting and increase predictive capacity but require grassroots promotion and are often best used when combined with official reports. Crowdsourced bicycling infrastructure data can be timely and facilitate comparisons across multiple cities; however, such data must be assessed for consistency in route type labels. Using social media, it is possible to track reactions to bicycle policy and infrastructure changes, yet linking attitudes expressed on social media platforms with broader populations is a challenge. New data present opportunities for improving our understanding of bicycling and supporting decision making towards transportation options that are healthy and safe for all. However, there are challenges, such as who has data access and how data crowdsourced tools are funded, protection of individual privacy, representativeness of data and impact of biased data on equity in decision making, and stakeholder capacity to use data given the requirement for advanced data science skills. If cities are to benefit from these new data, methodological developments and tools and training for end-users will need to track with the momentum of crowdsourced data.  相似文献   

19.
The current AASHTO policy for sight distance at stop-controlled intersections is based on a model of the acceleration performance of a minor-road vehicle turning left or right onto a major road and the deceleration performance of the following major-road vehicle. This paper develops and quantifies an alternative intersection sight distance model based on gap acceptance. The paper describes field studies that were performed to determine the critical gaps appropriate for use in sight distance design. It is recommended that the sight distance along the major road for a passenger car at a stop-controlled intersection be based on a distance equal to 7.5 s of travel time at the design speed of the major road. Longer sight distances are recommended for minor-road approaches that have sufficient truck volumes to warrant consideration of a truck as the design vehicle. ©  相似文献   

20.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号