首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The use of smartphone technology is increasingly considered a state-of-the-art practice in travel data collection. Researchers have investigated various methods to automatically predict trip characteristics based upon locational and other smartphone sensing data. Of the trip characteristics being studied, trip purpose prediction has received relatively less attention. This research develops trip purpose prediction models based upon online location-based search and discovery services (specifically, Google Places API) and a limited set of trip data that are usually available upon the completion of the trip. The models have the potential to be integrated with smartphone technology to produce real-time trip purpose prediction. We use a recent, large-scale travel behavior survey that is augmented by downloaded Google Places information on each trip destination to develop and validate the models. Two statistical and machine learning prediction approaches are used, including nested logit and random forest methods. Both sets of models show that Google Places information is a useful predictor of trip purpose in situations where activity- and person-related information is uncollectable, missing, or unreliable. Even when activity- and person-related information is available, incorporating Google Places information provides incremental improvements in trip purpose prediction.  相似文献   

2.
This paper proposes and analyzes a distance-constrained traffic assignment problem with trip chains embedded in equilibrium network flows. The purpose of studying this problem is to develop an appropriate modeling tool for characterizing traffic flow patterns in emerging transportation networks that serve a massive adoption of plug-in electric vehicles. This need arises from the facts that electric vehicles suffer from the “range anxiety” issue caused by the unavailability or insufficiency of public electricity-charging infrastructures and the far-below-expectation battery capacity. It is suggested that if range anxiety makes any impact on travel behaviors, it more likely occurs on the trip chain level rather than the trip level, where a trip chain here is defined as a series of trips between two possible charging opportunities (Tamor et al., 2013). The focus of this paper is thus given to the development of the modeling and solution methods for the proposed traffic assignment problem. In this modeling paradigm, given that trip chains are the basic modeling unit for individual decision making, any traveler’s combined travel route and activity location choices under the distance limit results in a distance-constrained, node-sequenced shortest path problem. A cascading labeling algorithm is developed for this shortest path problem and embedded into a linear approximation framework for equilibrium network solutions. The numerical result derived from an illustrative example clearly shows the mechanism and magnitude of the distance limit and trip chain settings in reshaping network flows from the simple case characterized merely by user equilibrium.  相似文献   

3.
Regional travel models in the United States are clearly evolving from conventional models towards a new generation of more behaviorally realistic activity-based models. The new generation of regional travel demand models is characterized by three features: (1) an activity-based platform, that implies that modeled travel be derived within a general framework of the daily activities undertaken by households and persons, (2) a tour-based structure of travel where the tour is used as the basic unit of modeling travel instead of the elemental trip, and (3) micro-simulation modeling techniques that are applied at the fully-disaggregate level of persons and households, which convert activity and travel related choices from fractional-probability model outcomes into a series of discrete or “crisp” decisions.While the new generation of model has obvious conceptual advantages over the conventional four-step models, there are still numerous technical issues that have to be addressed as well as a better understanding of practical benefits should be achieved before the new generation of models can fully replace conventional models. The paper summarizes the recent successful experience in the development and application of activity-based demand models for Metropolitan Planning Organizations in the US. Moving activity-based approaches into practice is analyzed in a broad context of travel demand modeling market tendencies and policy implications.  相似文献   

4.
Location-Based Social Networking (LBSN) services, such as Foursquare, Facebook check-ins, and Geo-tagged Twitter tweets, have emerged as new secondary data sources for studying individual travel mobility patterns at a fine-grained level. However, the differences between human social behavioral and travel patterns can cause significant sampling bias for travel demand estimation. This paper presents a dynamic model to estimate time-of-day zonal trip arrival patterns. In the proposed model, the state propagation is formulated by the Hawkes process; the observation model implements LBSN sampling. The proposed model is applied to Foursquare check-in data collected from Austin, Texas in 2010 and calibrated with Origin-Destination (OD) data and time of day factor from Capital Area Metropolitan Planning Organization (CAMPO). The proposed model is compared with a simple aggregation model of trip purposes and time of day based on a prior daily OD estimation model using the LBSN data. The results illustrate the promising benefits of applying stochastic point process models and state-space modeling in time-of-day zonal arrival pattern estimation with the LBSN data. The proposed model can significantly reduce the number of parameters to calibrate in order to reduce the sampling bias of LBSN data for trip arrival estimation.  相似文献   

5.
Aiming to develop a theoretically consistent framework to estimate travel demand using multiple data sources, this paper first proposes a multi-layered Hierarchical Flow Network (HFN) representation to structurally model different levels of travel demand variables including trip generation, origin/destination matrices, path/link flows, and individual behavior parameters. Different data channels from household travel surveys, smartphone type devices, global position systems, and sensors can be mapped to different layers of the proposed network structure. We introduce Big data-driven Transportation Computational Graph (BTCG), alternatively Beijing Transportation Computational Graph, as the underlying mathematical modeling tool to perform automatic differentiation on layers of composition functions. A feedforward passing on the HFN sequentially implements 3 steps of the traditional 4-step process: trip generation, spatial distribution estimation, and path flow-based traffic assignment, respectively. BTCG can aggregate different layers of partial first-order gradients and use the back-propagation of “loss errors” to update estimated demand variables. A comparative analysis indicates that the proposed methods can effectively integrate different data sources and offer a consistent representation of demand. The proposed methodology is also evaluated under a demonstration network in a Beijing subnetwork.  相似文献   

6.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

7.
Climate protection will require major reductions in GHG emissions from all sectors of the economy, including the transportation sector. Slowing growth in vehicle miles traveled (VMT) will be necessary for reducing transportation GHG emissions, even with major breakthroughs in vehicle technologies and low-carbon fuels (Winkelman et al., 2009). The Center for Clean Air Policy (CCAP) supports market-based policy approaches that minimize costs and maximize benefits. Our research indicates that significant GHG reductions can be achieved through smart growth and travel efficiency measures that increase accessibility, improve travel choices and make optimum use of existing infrastructure. Moreover, we find such measures can deliver compelling economic benefits, including avoided infrastructure costs, leveraged private investment, increased local tax revenues and consumer vehicle ownership and operating cost savings (Winkelman et al., 2009).As a society, what we build – where and how – has a tremendous impact on our carbon footprint, from building design to transportation infrastructure and land-use patterns. The empirical and modeling evidence is clear – people drive less in locations with efficient land use patterns, high quality travel choices and reinforcing policies and incentives (Ewing et al., 2008). It is also clear that there is growing and unmet market demand for walkable communities, reinforced by demographic shifts and higher fuel prices (Leinberger, 2006, Nelson, 2007). Transportation policy in the United States must rise to meet this demand for more travel choices and more livable communities.The academic, ideological and political debates about the level of GHG reductions and penetration rates that can or should be achieved via smart growth and pricing on the one hand, or measures such as ‘eco-driving’ and signal optimization on the other, have served their purpose: we know which policies are ‘directionally correct’ – policies that reduce GHG emissions even though we may not know the scope of those reductions. Now is the time to implement directionally correct policies, assess what works best where, and refine policy based on the results. It is a framework that CCAP calls “Do. Measure. Learn.”The Federal government is poised to spend $500 billion on transportation (Committee on Transportation and Infrastructure, 2009). CCAP encourages Congress to “Ask the Climate Question” – will our transportation investments help reduce GHG emissions or exacerbate the problem? Will they help increase our resilience to climate change impacts or increase our vulnerability? And, while we’re at it, will our investment foster energy security, livable communities and a vibrant economy? Federal transportation and climate policies should empower communities to implement locally-determined travel efficiency solutions by providing appropriate funding, tools and technical support.  相似文献   

8.
This study estimates trip demand and economic benefits for visitors to recreation sites when past season trip information is elicited from travelers intercepted on-site. We use a weighting function for past season counts that is different from, but nests, the standard on-site correction appropriate for current season counts. We find that for our sample of lake visitors relatively stronger preference or “avidity” for the interview site carries over across seasons. We further show that the appropriate weighting of past trip counts is critical in deriving meaningful estimates of travel demand and economic benefits.  相似文献   

9.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM.  相似文献   

10.
Effects of household structure and accessibility on travel   总被引:1,自引:0,他引:1  
The concept of accessibility has been widely used in the transportation field, commonly to evaluate transportation planning options. The fundamental hypothesis of many studies related to accessibility could be “greater accessibility leads to more travel”. However, several studies have shown inconsistent results given this common hypothesis, finding instead that accessibility is independent of the trip/tour frequency. In addition, empirical aggregate urban modeling applications commonly produce either non-significant or negative (wrong sign) relationships between accessibility and the trip/tour frequency. For this reason, many practitioners rarely incorporate a measure of accessibility into trip/tour generation models out of consideration of the induced demand. In this context, this study examined the effect of accessibility in urban and suburban residences on the maintenance and discretionary activity tour frequencies of the elderly and the non-elderly using household travel survey data collected in the Seoul Metropolitan Area of Korea. The major finding of this study is that a higher density of land use and better quality of transportation service do not always lead to more tours due to the presence of intra-household interactions, trip chaining, and different travel needs by activity type. This finding implies that accessibility-related studies should not unquestioningly accept the common hypothesis when they apply accessibility measures to evaluate their transportation planning options or incorporate them into their trip/tour generation models.  相似文献   

11.
Travel surveys based on global positioning system (GPS) data have exponentially increased over the past decades. Trip characteristics, including trip ends, travel modes, and trip purposes need to be detected from GPS data. Compared with other trip characteristics, studies on trip purpose detection are limited. These studies struggle with three types of limitations, namely, data validation, classification approach-related issues, and result comparison under multiple scenarios. Therefore, we attempt to obtain full understanding and improve these three aspects when detecting trip purposes in the current study. First, a smartphone-based travel survey is employed to collect GPS data, and a surveyor-intervened prompted recall survey is used to validate trip characteristics automatically detected from the GPS data. Second, artificial neural networks combined with particle swarm optimization are used to detect trip purposes from the GPS data. Third, four scenarios are constructed by employing two methods for land-use type coding, i.e., polygon-based information and point of interest, and two methods for selecting training dataset, i.e., equal proportion selection and equal number selection. The accuracy of trip purpose detection is then compared under these scenarios. The highest accuracies of 97.22% for the training dataset and 96.53% for the test dataset are achieved under the scenario of polygon-based information and equal proportion selection by comparing the detected and validated trip purposes. Promising results indicate that a smartphone-based travel survey can complement conventional travel surveys.  相似文献   

12.
Theoretical and empirical research about the impact of information and communication technologies (ICT) on transport relies on the hypothesis that ICT use leads to a reorganization of activities in time and space thus having as a consequence impacts on travel behavior. The breaking up of activities into discrete pieces by the use of ICT is the starting point of the fragmentation concept that underlies the present article. The concept argues that transport demand increases by the fragmentation of activities and explores the relevant mechanisms for this process. In all, however, the concept is still rather vague. Therefore, the authors discuss some elements of the concept on a theoretical level, in particular the question why individuals “fragment” their activities. In the empirical section they use a data set about activities, ICT use and travel behavior in Germany to find out how far an activity like work, which is particularly apt for fragmentation, shows signs of temporal and spatial disintegration. With the help of a cluster analysis they identify groups with different “fragmentation behavior” and investigate if a statistically significant relation exists between fragmentation behavior and ICT use. Accordingly, the focus of the article lies on the impact of ICT use on the performance of activities by different behavioral groups. The link to travel behavior is made by examining mode choices for different purposes and travel related attitudes.  相似文献   

13.
The combination of increasing challenges in administering household travel surveys and advances in global positioning systems (GPS)/geographic information systems (GIS) technologies motivated this project. It tests the feasibility of using a passive travel data collection methodology in a complex urban environment, by developing GIS algorithms to automatically detect travel modes and trip purposes. The study was conducted in New York City where the multi-dimensional challenges include urban canyon effects, an extreme dense and diverse set of land use patterns, and a complex transit network. Our study uses a multi-modal transportation network, a set of rules to achieve both complexity and flexibility for travel mode detection, and develops procedures and models for trip end clustering and trip purpose prediction. The study results are promising, reporting success rates ranging from 60% to 95%, suggesting that in the future, conventional self-reported travel surveys may be supplemented, or even replaced, by passive data collection methods.  相似文献   

14.
Travel demand analyses are useful for transportation planning and policy development in a study area. However, travel demand modeling faces two obstacles. First, standard practice solves the four travel components (trip generation, trip distribution, modal split and network assignment) in a sequential manner. This can result in inconsistencies and non-convergence. Second, the data required are often complex and difficult to manage. Recent advances in formal methods for network equilibrium-based travel demand modeling and computational platforms for spatial data handling can overcome these obstacles. In this paper we report on the development of a prototype geographic information system (GIS) design to support network equilibrium-based travel demand models. The GIS design has several key features, including: (i) realistic representation of the multimodal transportation network, (ii) increased likelihood of database integrity after updates, (iii) effective user interfaces, and (iv) efficient implementation of network equilibrium solution algorithms.  相似文献   

15.
The way in which a person organizes his or her day, both temporally and spatially, is a highly important matter to travel behavior and travel demand modeling. Many times, the focus of these models is to accurately predict the “where” and “when”, without paying adequate attention to the “why.” The participation in activities, and therefore the selection of a place for these activities has been recently discussed within the framework of subjective well being. The motivation of happiness can be used to understand how and why people make the choices that they do. Many different criteria are used by individuals in the selection of destinations. These criteria range from attributes such as distance and cost, to attributes such as comfort, security and social aspects in determining the most rewarding destinations. Aspects contributing to a rewarding experience can also be viewed as those decision criteria that lead to the highest satisfaction. In this paper, several attributes of places and decision-making are explored for their potential to explain destination choices. First, a broader analysis of destination choice and criteria used helps us develop a geographic representation of attitudes and views regarding the area of Santa Barbara, California. Following this general evaluation of space, individual activity types are statistically analyzed in the importance different attributes play in the selection of a destination that leads to higher satisfaction.  相似文献   

16.
The amount of time required to pick up and discharge passengers is an important issue in the planning and modeling of urban bus systems. Several past studies have employed models of this component of bus travel time which are based, in part, on a model of the number of stoppings the bus makes to pick up or discharge passengers. Most past versions of this model have assumed that expected demand does not vary from stop to stop or from trip to trip, but that the number of passengers demanding service at any given stop during any given trip follows a Poisson distribution. An alternative model is derived, based on the assumption that expected demand varies among stops and times of day but is fixed from day to day at any given stop and time of day. Boarding and alighting survey data are used to verify that the “average-demand” Poisson model consistently overestimates the number of stoppings and to calibrate an approximate version of the alternative model. A stop-spacing optimization model previously developed by Kikuchi and Vuchic is reevaluated using the alternative stopping model in place of the average demand model used in the original version. The results are found to be considerably different, thus indicating that transit route optimization models are sensitive to the way in which stopping processes are modeled.  相似文献   

17.
Activity-based travel demand modeling (ABTDM) has often been viewed as an advanced approach, due to its higher fidelity and better policy sensitivity. However, a review of the literature indicates that no study has been undertaken to investigate quantitatively the differences and accuracy between an ABTDM approach and a traditional four-step travel demand model. In this paper we provide a comparative analysis against each step – trip generation, trip distribution, mode split, and network assignment – between an ABTDM developed using travel diary data from the Tampa Bay Region in Florida and the Tampa Bay Regional Planning Model (TBRPM), an existing traditional four-step model for the same area. Results show salient differences between the TBRPM and the ABTDM, in terms of modeling performance and accuracy, in each of the four steps. For example, trip production rates calculated from the travel diary data are found to be either double or a quarter less than those used in the TBRPM. On the other hand, trip attraction rates computed from activity-based travel simulations are found to be either more than double or one tenth less than those used in the TBRPM. The trip distribution curves from the two models are similar, but both average and peak trip lengths of the two are significantly different. Mode split analyses show that the TBRPM may underestimate driving trips and fail to capture any usage of alternative modes, such as taxi and nonmotorized (e.g., walking and bicycling) modes. In addition, the ABTDMs are found to be less capable of reproducing observed traffic counts when compared to the TBRPM, most likely due to not considering external and through trips. The comparative results presented can help transportation engineers and planners better understand the strengths and weaknesses of the two types of model and this should assist decision-makers in choosing a better modeling tool for their planning initiatives.  相似文献   

18.
This paper analyzes the transferability of a composite walkability index, the Pedestrian Index of the Environment (PIE), to the Greater Montréal Area (GMA). The PIE was developed in Portland, Oregon, and is based on proprietary data. It combines six urban form variables into a score ranging from 20 to 100. The measure introduces several methodological refinements which have not been applied concurrently in previous efforts: a wide coverage of the different dimensions of the urban form, together with the use of a distance-based decay function and modelling-based weighing of the variables.This measure is applied to the GMA using local data in order to evaluate the feasibility of its transfer (the possibility of locally replicating the measure). It is then included in a series of mode choice models to assess its transferability (the capacity of the measure to describe walkability and predict mode choice in another urban area). The models, segmented by trip distance or trip purpose, are estimated and validated against observed trip data from the 2013 Origin-Destination survey.Significant positive correlation is found between the PIE and the choice of walking for short trips, for all purposes as well as for four specific trip purposes. The inclusion of the PIE also improves the accuracy of the modelling process as well as the prediction of the choice of walking for short trips. The PIE can therefore be used in the GMA, and potentially in other metropolitan areas, to improve the modelling of travel behavior for short trips.  相似文献   

19.
In designing travel behavior surveys, the problem is to define “work,” “home,” and similar words that are commonly used in our language but which have acquired a plethora of associated meanings. The difficulty has not been resolved by the many new terms coined to describe non-traditional ways to work. Such words as “telecommuting,” “teleworking,” “at-home work,” “hoteling,” “homebased business,” “road warriors” and “mobile workers,” lack any agreed-upon definitions yet they are used in common parlance as if they did. These new workstyles are of interest to travel planners because they may involve trip reduction. To forecast just how much trip reduction will occur, behavior needs to be measured by objective criteria. To avoid definitional traps, we recommend phrasing questions in terms of measurable variables such as the place of work and the time in days and hours spent at each location. That approach leaves researchers the option of applying their own definitions that fit the context of their analyses. Thus, rather than ask “How many days a week do you telecommute?” the more precise question can be asked: “How many days last week did you work at home instead of going to your usual work location?” This approach has the advantage that information gathered over years can be used unambiguously in various contexts. Definitions can be applied at the point of analysis. This paper illustrates errors and confusion that can arise from casually worded surveys using examples from private and public surveys. The author proposes a set of core questions with four levels of priority for consideration in designing future surveys of travel behavior.  相似文献   

20.
Daisy  Naznin Sultana  Liu  Lei  Millward  Hugh 《Transportation》2020,47(2):763-792

Suburban development patterns, flexible work hours, and increasing participation in out-of-home activities are making the travel patterns of individuals more complex, and complex trip chaining could be a major barrier to the shift from drive-alone to public transport. This study introduces a cohort-based approach to analyse trip tour behaviors, in order to better understand and model their relationships to socio-demographics, trip attributes, and land use patterns. Specifically, it employs worker population cohorts with homogenous activity patterns to explore differences and similarities in tour frequency, trip chaining, and tour mode choices, all of which are required for travel demand modeling. The paper shows how modeling of these important tour variables may be improved, for integration into an activity-based modeling framework. Using data from the Space–Time Activity Research (STAR) survey for Halifax, Canada, five clusters of workers were identified from their activity travel patterns. These were labeled as extended workers, 8 to 4 workers, shorter work-day workers, 7 to 3 workers, and 9 to 5 workers. The number of home-based tours per day for all clusters were modeled using a Poisson regression model. Trip chaining was then modeled using an Ordered Probit model, and tour mode choice was modeled using a Multinomial logit (MNL) model. Statistical analysis showed that socio-demographic characteristics and tour attributes are significant predictors of travel behavior, consistent with existing literature. Urban form characteristics also have a significant influence on non-workers’ travel behavior and tour complexity. The findings of this study will assist in the future evaluation of transportation projects, and in land-use policymaking.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号