首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper analyzes the interdependency across two critical infrastructures of transportation and motor fueling supply chains, and investigates how vulnerability to climatic extremes in a fueling infrastructure hampers the resilience of a transportation system. The proposed model features both a bi-stage mathematical program and an extension to an ‘α-reliable mean-excess’ regret model. The former aspect allows decision makers to optimize the pre-disaster asset prepositioning against the maximum post-disaster system resilience. The latter aspect of the proposed model devalues the impact of ‘low-probability, high-cost’ sub-scenarios upon model results. The model reveals the reliance of post-disaster urban mobility on the interdependent critical infrastructure of motor fueling supply chains. The results also suggest how investment in the fueling infrastructure’s vulnerable elements protects urban mobility while the transportation network is stressed or under attack.  相似文献   

2.
As demand increases over time, new links or improvements in existing links may be considered for increasing a network's capacity. The selection and timing of improvement projects is an especially challenging problem when the benefits or costs of those projects are interdependent. Most existing models neglect the interdependence of projects and their impacts during intermediate periods of a planning horizon, thus failing to identify the optimal improvement program. A multiperiod network design model is proposed to select the best combination of improvement projects and schedules. This model requires the evaluation of numerous network improvement alternatives in several time periods. To facilitate efficient solution methods for the network design model, an artificial neural network approach is proposed for estimating total travel times corresponding to various project selection and scheduling decisions. Efficient procedures for preparing an appropriate training data set and an artificial neural network for this application are discussed. The Calvert County highway system in southern Maryland is used to illustrate these procedures and the resulting performance.  相似文献   

3.
Efficient planning of Airport Acceptance Rates (AARs) is key for the overall efficiency of Traffic Management Initiatives such as Ground Delay Programs (GDPs). Yet, precisely estimating future flow rates is a challenge for traffic managers during daily operations as capacity depends on a number of factors/decisions with very dynamic and uncertain profiles. This paper presents a data-driven framework for AAR prediction and planning towards improved traffic flow management decision support. A unique feature of this framework is to account for operational interdependency aspects that exist in metroplex systems and affect throughput performance. Gaussian Process regression is used to create an airport capacity prediction model capable of translating weather and metroplex configuration forecasts into probabilistic arrival capacity forecasts for strategic time horizons. To process the capacity forecasts and assist the design of traffic flow management strategies, an optimization model for capacity allocation is developed. The proposed models are found to outperform currently used methods in predicting throughput performance at the New York airports. Moreover, when used to prescribe optimal AARs in GDPs, an overall delay reduction of up to 9.7% is achieved. The results also reveal that incorporating robustness in the design of the traffic flow management plan can contribute to decrease delay costs while increasing predictability.  相似文献   

4.
This paper presents game-theoretical models based on a continuous approximation (CA) scheme to optimize service facility location design under spatial competition and facility disruption risks. The share of customer demand in a market depends on the functionality of service facilities and the presence of nearby competitors, as customers normally seek the nearest functioning facility for service. Our game-theoretical models incorporate these complicating factors into an integrated framework, and use continuous and differentiable density functions to represent discrete location decisions. We first analyze the existence of Nash equilibria in a symmetric two-company competition case. Then we build a leader–follower Stackelberg competition model to derive the optimal facility location design when one of the companies has the first mover advantage over its competitor. Both models are solved effectively, and closed-form analytical solutions can be obtained for special cases. Numerical experiments (with hypothetical and empirical data) are conducted to show the impacts of competition, facility disruption risks and transportation cost metrics on the optimal design. Properties of the models are analyzed to cast interesting managerial insights.  相似文献   

5.
Technological paradigm shifts often come with a newly emerging industry that seeks a viable infrastructure deployment plan to compete against established competitors. Such phenomenon has been repeatedly seen in the field of transportation systems, such as those related to the booming bioenergy production, among others. We develop a game-theoretic modeling framework using a continuum approximation scheme to address the impacts of competition on the optimal infrastructure deployment. Furthermore, we extend the model to incorporate uncertainties in supply/demand and the risk of facility disruptions. Analytical properties of the optimal infrastructure system are obtained, based on which fast numerical solution algorithms are developed. Several hypothetical problem instances are used to illustrate the effectiveness of the proposed algorithms and to quantify the impacts of various system parameters. A large-scale biofuel industry case study for the U.S. Midwest is conducted to obtain additional managerial insights.  相似文献   

6.
This paper investigates a facility location model that considers the disruptions of facilities and the cost savings from the inventory risk-pooling effect and economies of scale. Facilities may have heterogeneous disruption probabilities. When a facility fails, its customers may be reassigned to other surviving ones to hedge against lost-sales costs. We first develop both an exact and an approximate expression for the nonlinear inventory cost, and then formulate the problem as a nonlinear integer programming model. The objective is to minimize the expected total cost across all possible facility failure scenarios. To solve this problem, we design two methods, an exact approach using special ordered sets of type two (SOS2) and a heuristic based on Lagrangian relaxation. We test the model and algorithms on data sets with up to 150 nodes. Computational results show that the proposed algorithms can solve the problem efficiently in reasonable time. Managerial insights on the optimal facility deployment, customer assignments and inventory control strategies are also drawn.  相似文献   

7.
杨晓 《综合运输》2021,(3):61-64
我国快速客运网基本形成,长途跨线列车直达与中转选择对于高速列车开行方案设计至关重要。为提升长途跨线高速列车开行效益和服务品质,按长途跨线列车直达与中转方式对比的思路,以旅客出行需求、基础设施能力、移动设备能力等多方面因素对长途跨线列车开行方式的影响为约束条件,研究长途跨线列车直达与中转选择模型及求解方法。选取2025年15个长途跨线起讫点为对象进行案例研究,提出D站—E站、F站—D站等9个起迄点之间开行长途跨线直达列车的建议方案,研究表明直达与中转换乘选择模型能够解决长途跨线列车开行方案编制问题。  相似文献   

8.
This paper presents a new methodology to identify optimal locations and capacity for rail-based Park-and-Ride (P&R) sites to increase public transport mode share. P&R is usually taken as an important component of policies for the sustainable development of urban transport systems. However, previous studies reveal that arbitrarily determined P&R sites may act to reduce public transport commuting. This paper proposes a methodology for the optimal location and capacity design of P&R sites, with the aim of enhancing public transport usage. A Combined Mode Split and Traffic Assignment (CMSTA) model is proposed for the P&R scheme. Taking the CMSTA model as the lower level, a bi-level mathematical programming model is then built to establish the optimal location and capacity of P&R sites. A heuristic genetic algorithm is adopted to solve this model. Finally, a network example is adopted to test numerically the proposed models and algorithms.  相似文献   

9.
Cross-border transit facilities constitute major public investment, and thus must serve the long-term needs of the communities, such as providing access to schools and businesses, contributing to a shared regional culture and lifestyle, fostering international trade, and supporting jobs for the region’s residents. Numerous studies have been conducted to evaluate the economic implications of vehicular flow delays at border crossings, however none of the studies focused on assessing cross-border flow of bus passengers and pedestrians. Since pedestrians are considered to be autonomous, intelligent, and perceptive, it is a challenging task to predict pedestrian movement and behavior in comparison to vehicular flows which follow a specific set of traffic rules. This paper presents a multiagent based multimodal simulation model to evaluate the capacity and performance of a cross-border transit facility. The significance of this research is the use of dynamic mode choice functionality in the model, which allows an individual person to make instantaneous choices between available modes of transportation. The scope of interest of the paper is limited to simulating access interface, circulation areas, ancillary and processing facilities. The developed model was calibrated to ensure realistic performance, and validated against specific performance criteria such as throughput per processing facility. In order to demonstrate the applicability of the developed simulation model, capacity and operational planning of a pedestrian transit facility was performed. The relative performance of alternative design or configuration was evaluated using the level of service criteria. Lastly, the effectiveness of each proposed capacity or operational improvement strategy was compared to the “do-nothing” scenario.  相似文献   

10.
11.
This study develops and applies a multimodal computable general equilibrium (CGE) framework to investigate the role of resilience in the economic consequences of transportation system failures. Vulnerability and economic resilience of different modes of transportation infrastructure, including air, road, rail, water and local transit, are assessed using a CGE model that incorporates various resilience tactics including modal substitution, trip conservation, excess capacity, relocation/rerouting, and service recapture. The linkages between accessibility, vulnerability, and resilience are analyzed. The model is applied to the transportation system failures in the aftermath of Hurricane Katrina to illustrate its capabilities. The analytical framework, however, has broader applications and can provide insights for resource allocations to enhance emergent responses to unexpected events and to improve resilient design of transportation infrastructure systems.  相似文献   

12.
The effectiveness of transit-based emergency evacuation highly depends on the location of pick-up facilities, resource allocation, and management. These facilities themselves are often subject to service disruptions during or after the emergency. This paper proposes a reliable emergency facility location model that determines both pre-emergency facility location planning and the evacuation operations afterwards, while facilities are subject to the risk of disruptions. We analyze how evacuation resource availability leverages individual evacuees’ response to service disruptions, and show how equilibrium of the evacuee arrival process could be reached at a functioning pick-up facility. Based on this equilibrium, an optimal resource allocation strategy is found to balance the tradeoff between the evacuees’ risks and the evacuation agency’s operation costs. This leads to the development of a compact polynomial-size linear integer programming formulation that minimizes the total expected system cost from both pre-emergency planning (e.g., facility set-up) and the evacuation operations (e.g., fleet management, transportation, and exposure to hazardous surroundings) across an exponential number of possible disruption scenarios. We also show how the model can be flexibly used to plan not only pre-disaster evacuation but also post-disaster rescue actions. Numerical experiments and an empirical case study for three coastal cities in the State of Mississippi (Biloxi, Gulfport, and D’lberville) are conducted to study the performance of the proposed models and to draw managerial insights.  相似文献   

13.
Understanding the cause of cost overruns in transportation infrastructure projects has been a topic that has received considerable attention from academics and the popular press. Despite studies providing the essential building blocks and frameworks for cost overrun mitigation and containment, the problem still remains a pervasive issue for Governments worldwide. The interdependency that exists between ‘causes’ that lead to cost overruns materialising have largely been ignored when considering the likelihood and impact of their occurrence. The vast majority of the cost overrun literature has tended to adopt a deterministic approach in examining the occurrence of the phenomenon; in this paper a shift towards the adoption of pluralistic probabilistic approach to cost overrun causation is proposed. The establishment of probabilistic theory incorporates the ability to consider the interdependencies of causes so to provide Governments with a holistic understanding of the uncertainties and risks that may derail the delivery and increase the cost of transportation infrastructure projects. This will further assist in the design of effective mitigation and containment strategies that will ensure future transportation infrastructure projects meet their expected costs as well as the need of taxpayers.  相似文献   

14.
We present a quadratic programming framework to address the problem of finding optimal maintenance policies for multifacility transportation systems. The proposed model provides a computationally-appealing framework to support decision making, while accounting for functional interdependencies that link the facilities that comprise these systems. In particular, the formulation explicitly captures the bidirectional relationship between demand and deterioration. That is, the state of a facility, i.e., its condition or capacity, impacts the demand/traffic; while simultaneously, demand determines a facility’s deterioration rate. The elements that comprise transportation systems are linked because the state of a facility can impact demand at other facilities. We provide a series of numerical examples to illustrate the advantages of the proposed framework. Specifically, we analyze simple network topologies and traffic patterns where it is optimal to coordinate (synchronize or alternate) interventions for clusters of facilities in transportation systems.  相似文献   

15.
We consider a supply chain network design problem that takes CO2 emissions into account. Emission costs are considered alongside fixed and variable location and production costs. The relationship between CO2 emissions and vehicle weight is modeled using a concave function leading to a concave minimization problem. As the direct solution of the resulting model is not possible, Lagrangian relaxation is used to decompose the problem into a capacitated facility location problem with single sourcing and a concave knapsack problem that can be solved easily. A Lagrangian heuristic based on the solution of the subproblem is proposed. When evaluated on a number of problems with varying capacity and cost characteristics, the proposed algorithm achieves solutions within 1% of the optimal. The test results indicate that considering emission costs can change the optimal configuration of the supply chain, confirming that emission costs should be considered when designing supply chains in jurisdictions with carbon costs.  相似文献   

16.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

17.
The focus of this study is to jointly design charging stations and photovoltaic (PV) power plants with time-dependent charging fee, to improve the management of the coupled transportation and power systems. We first propose an efficient and extended label-setting algorithm to solve the EV joint routing and charging problem that considers recharging amount choices at different stations and loop movement cases. Then, a variational inequality problem is formulated to model the equilibrium of EV traffic on transportation networks, and an optimal power flow model is proposed to model the power network flow with PV power plants and optimally serve the EV charging requirements. Based on the above models for describing system states, we then formulate a model to simultaneously design charging stations, PV plants, and time-dependent charging fee. A surrogate-based optimization (SBO) algorithm is adopted to solve the model. Numerical examples demonstrate that the proposed SBO algorithm performs well. Additionally, important insights concerning the infrastructure design and price management of the coupled transportation and power networks are derived accordingly.  相似文献   

18.
Global supply chains are more than ever under threat of major disruptions caused by devastating natural and man-made disasters as well as recurrent interruptions caused by variations in supply and demand. This paper presents a hybrid robust-stochastic optimization model and a Lagrangian relaxation solution method for designing a supply chain resilient to (1) supply/demand interruptions and (2) facility disruptions whose risk of occurrence and magnitude of impact can be mitigated through fortification investments. We study a realistic problem where a disruption can cause either a complete facility shutdown or a reduced supply capacity. The probability of disruption occurrence is expressed as a function of facility fortification investment for hedging against potential disruptions in the presence of certain budgetary constraints. Computational experiments and thorough sensitivity analyses are completed using some of the existing widely-used datasets. The performance of the proposed model is also examined using a Monte Carlo simulation method. To explore the practical application of the proposed model and methodology, a real world case example is discussed which addresses mitigating the risk of facility fires in an actual oil production company. Our analysis and investigation focuses on exploring the extent to which supply chain design decisions are influenced by factors such as facility fortification strategies, a decision maker's conservatism degree, demand fluctuations, supply capacity variations, and budgetary constraints.  相似文献   

19.
Reliable sensor deployment for network traffic surveillance   总被引:1,自引:0,他引:1  
New sensor technologies enable synthesis of disaggregated vehicle information from multiple locations. This paper proposes a reliable facility location model to optimize traffic surveillance benefit from synthesized sensor pairs (e.g., for travel time estimation) in addition to individual sensor flow coverage (e.g., for traffic volume statistics), while considering probabilistic sensor failures. Customized greedy and Lagrangian relaxation algorithms are proposed to solve this problem, and their performance is discussed. Numerical results show that the proposed algorithms solve the problem efficiently. We also discuss managerial insights on how optimal sensor deployment and surveillance benefits vary with surveillance objective and system parameters (such as sensor failure probabilities).  相似文献   

20.
In this paper, we estimate the effects of weather conditions such as wind, temperature and precipitation on railway operator performance of passenger train services. We distinguish between the direct effects of weather conditions and the indirect effects through disturbances in infrastructure. We show that certain types of bad weather mainly affect train operators’ performance indirectly, through their effect on infrastructure. Furthermore, we show that the welfare losses for passengers confronted with increased cancellations of trains and decreased punctuality in The Netherlands due to one standard deviation increase in infrastructure disruptions amount to about €80 million per year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号