首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
尼尔森体系拱因其结构及受力变形的优越性,在现代铁路建设中得到越来越多的应用[1,2]。根据道岔-桥梁相互作用原理,建立"岔-板-梁-墩一体化"有限元模型,以某城市轨道交通中尼尔森体系刚架拱桥为例,对不同工况条件下桥上无缝道岔进行受力计算分析。结果表明:移动小里程端道岔梁的支座以及在道岔梁间插入简支短梁,并综合考虑简支短梁支座的布置方式,其道岔布置可满足规范要求。  相似文献   

2.
根据桥上无缝道岔纵向相互作用特点,利用有限元软件ANSYS进行二次开发,采用APDL语言编写了桥上无缝道岔纵向附加力计算程序,建立了线-桥-墩-基础一体化计算模型。以12号固定辙叉无缝道岔在路基上变化位置为计算条件,分析了温差、扣件阻力、道床阻力、支座布置、限位器个数、限位器间隙等因素对桥上无缝线路的影响。计算结果表明:隧道道床、扣件阻力减少,无缝道岔对桥上无缝线路的影响范围增大;支座布置情况不同时,无缝道岔对桥上无缝线路的影响范围变化明显;随着温差减少,直基本轨与尖轨尖端相对位移逐渐减少。  相似文献   

3.
甬台温铁路客运专线永嘉高架站桥梁设计   总被引:1,自引:1,他引:0  
甬台温铁路是最早开工建设的时速250 km客运专线之一,目前已通车运营。永嘉车站采用全高架,渡线区和咽喉区无缝道岔全部布设在桥梁上,结合高架车站桥梁设计,对客运专线无缝道岔桥梁技术特点和道岔区桥式布置及结构设计进行阐述,可供客运专线中小高架车站桥梁设计参考。  相似文献   

4.
京沪高速铁路新苏州站道岔区桥式布置方案研究   总被引:1,自引:0,他引:1  
桥上无缝道岔设置在连续结构上,我国铁路上缺少这方面的设计经验。结合京沪高速铁路新苏州站,对无缝道岔区桥梁结构方案的进行研究,比选出了较为合理的桥跨布置形式,并提出了积极的建议。  相似文献   

5.
浙赣线是我国首次在时速200km客货共线铁路简支梁桥上铺设无缝道岔的铁路干线,本文介绍了桥上无缝道岔布置、检算及道岔结构改进设计等内容,对简支梁桥上无缝道岔的设计及养护维修有一定的参考价值。  相似文献   

6.
研究目的:随着我国客运专线铁路的建设发展,受车站布置的影响,跨区间无缝线路道岔上桥已不可避免.本文从桥面布置、结构形式和施工方案3个方面,对设于道岔区的厦深铁路韩江特大桥主跨(48 3×80 48) m变宽度有砟轨道连续梁桥进行设计研究.研究结果:通过大跨变宽度连续梁有限元分析计算,梁部各项指标均满足桥梁规范及轨道专业要求,设计的施工方案也是切实可行的.韩江桥满足了车站布置和通航、防洪需要,在大跨度预应力混凝土连续梁桥上设置高速无缝道岔属于国内首次,也是我国客运专线建设中又一关键技术的突破和创新.  相似文献   

7.
宫万国 《铁道建筑》2012,(10):120-123
桥上无缝道岔设计同时涉及桥梁—钢轨相互作用力及道岔基本轨—尖轨相互作用力两方面问题。对典型桥上咽喉区普通桥上无缝线路及桥上无缝道岔群进行了对比检算,检算结果表明,桥上无缝道岔较一般区间桥上无缝线路钢轨附加力明显增大,桥上无缝道岔设计应同时兼顾道岔与桥梁孔跨布置。无缝道岔布置于连续梁上时,其钢轨伸缩附加力较区间桥上无缝线路增幅要大,尤其在咽喉区多联连续梁且两组道岔对向布置情况最为不利,如道岔对向布置情况不可避免,此时应在两连续梁间插入简支梁,道岔距梁缝应保持一定距离,以尽量减少连续梁温度跨度与道岔限位装置钢轨附加力叠加效应。  相似文献   

8.
连续梁桥上无缝道岔温度力与变形影响因素分析   总被引:2,自引:1,他引:1  
研究目的:桥上无缝道岔是跨区间无缝线路的一项关键技术。分析各种因素对道岔和桥梁的受力与变形的影响,总结出连续梁桥上无缝道岔受力与变形规律,是关系到客运专线运营安全的重要问题。研究方法:通过建立连续梁桥上无缝道岔的有限元计算模型,利用Ansys软件对连续梁桥上无缝道岔进行力学计算并作参数影响分析。研究结果:道岔布置位置和桥墩支座布置形式对系统受力和变形影响较大;增大岔区内道床纵向阻力和扣件纵向阻力,有利于控制道岔的位移;连续梁固定墩刚度增加能有效控制道岔各主要位移,同时能减小基本轨最大附加力;轨温变化幅度对系统受力和变形的影响非常显著。研究结论:道岔应避免布置在梁的端部并且尽量让道岔导轨与梁体反向伸缩;合理设计锁定轨温能有效地改善系统受力状况。  相似文献   

9.
连续梁桥上典型道岔群纵向受力与变形分析   总被引:1,自引:1,他引:0  
连续梁桥上双线两组道岔对称布置和咽喉区外侧的单渡线是客运专线建设中主要的无缝道岔群布置形式,为了指导和完善连续梁桥上铺设道岔群时道岔和桥梁的设计方法,本文根据桥上无缝道岔纵向相互作用原理,建立了道岔—桥梁—墩台一体化有限元计算模型,以18号无缝道岔铺设在连续梁桥上为例,分析了这两种常见道岔群的纵向受力与变形规律.计算结果表明,两组道岔对称布置时,可按单组道岔进行计算,墩台承受两组单开道岔的传力;单渡线这种岔桥布置对道岔与桥梁的受力都是有利的.  相似文献   

10.
徐浩  王平 《铁道建筑》2011,(3):90-92
桥上无缝道岔的受力和变形情况比较复杂,影响因素众多。以单组18#单开道岔铺设在简支梁桥上为例,建立道岔—桥梁—墩台一体化空间计算模型。利用有限单元法,考虑固定支座在左侧和右侧两种工况,分析了简支梁桥支座位置对无缝道岔受力和变形的影响。计算结果表明,当固定支座在右侧时,基本轨的伸缩位移远大于固定支座在左侧的情况,故应尽量避免将固定支座设置在右侧。  相似文献   

11.
综合桥上无缝线路和无缝道岔的技术特点,桥上铺设无缝道岔对高速铁路桥梁设计提出了更高的要求。针对高速铁路咽喉区和渡线道岔区特点,确定无砟轨道无缝道岔对桥梁结构变形及梁缝位置的要求,提出道岔区桥梁设计原则与技术要求,以及典型道岔区桥梁布置以及结构形式。高速铁路道岔区桥梁设计以道岔与桥梁相互作用理论为基础,充分考虑轨道作用力的影响,通过车-岔-桥耦合动力响应分析,确保高速列车运行的安全性、平稳性。  相似文献   

12.
桥上无缝道岔纵向力计算研究   总被引:1,自引:0,他引:1  
根据桥上无缝道岔纵向相互作用特点,建立岔—(板)—桥—墩一体化分析模型,应用有限元方法进行求解,对车站咽喉区道岔群、八字渡线桥上无缝道岔两种形式道岔进行计算,并与德国桥上无缝道岔计算理论对比验证。验证结论为:在两种形式道岔布置情况下,岔桥系统纵向相互计算模型与德国桥上无缝道岔计算理论计算结果相吻合。  相似文献   

13.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

14.
桥上无缝道岔纵向力计算理论与试验研究   总被引:3,自引:0,他引:3  
根据桥上无缝道岔受力和变形特点,建立道岔-桥梁-墩台一体化计算模型,并利用有限元法对模型求解。以浙赣线湄池1号大桥为例,分析桥上无缝道岔的受力与变形的特性,测试桥上无缝道岔的温度力和位移。试验结果表明,理论计算结果和实测数据相吻合。理论分析和实验研究表明:所建立的道岔-桥梁-墩台一体化模型用于计算桥上无缝道岔纵向力和位移是合理可行的;桥上无缝道岔与桥上无缝线路的受力和变形差别很大,在计算桥上无缝道岔时应考虑实际的钢轨温度变化幅度、道岔布置方式和岔、桥相对位置。在道岔布置密集的区域,如车站咽喉区,道岔间的相互影响较大,为准确计算道岔及桥梁的受力和位移,应建立包括所有道岔和桥梁的整体模型。  相似文献   

15.
无缝道岔和桥上无缝线路是高速、重载铁路轨道结构强化的关键技术。与路基上无缝道岔相比,桥上无缝道岔区轮轨动力相互作用更强烈,轨道几何状态更难以保持,安全储备不足。以沪昆线湄池1号特大桥为工程背景,根据理论分析和现场试验,透析了有砟简支梁桥上无缝道岔轨道几何状态难以保持的主要原因,针对性地提出了增加横向约束来控制桥上无缝道岔轨道稳定性的方法。实践表明,采用所提出的控制方法能够有效改善轨道几何状态、提高列车运行平稳性,减少养护维修工作量。  相似文献   

16.
京沪高速铁路徐沪段桥上板式无砟无缝道岔设计研究   总被引:1,自引:0,他引:1  
王玉泽 《铁道建筑》2014,(5):120-123
介绍了京沪高速铁路徐沪段桥上板式无砟无缝道岔的结构组成和结构特点,建立了桥上纵连底座板式无砟无缝道岔的"岔—板—板—梁—墩"一体化计算模型和计算方法,基于开裂后钢筋混凝土刚度折减理念和轴向拉压杆件理论采用极限状态法进行底座板结构设计,提出了京沪高速铁路道岔梁结构设计方法,确定道岔梁的合理结构形式、设计参数、纵横向支座合理布置方式。  相似文献   

17.
随着我国铁路和城市轨道交通的建设和发展,跨区间无缝线路的广泛铺设,越来越多的桥上铺设无缝道岔,而桥上无缝道岔较一般的桥上无缝线路受力变形更为复杂,道岔几何形位更难保持。基于桥上无缝道岔梁轨以及道岔股道之间相互作用理论,分析了桥上无缝道岔整体设计的检算评估方法,并阐述了设计中的注意事项。  相似文献   

18.
研究目的:对高速铁路咽喉区由正线2股道变为站内6股道形成的多股道变化的道岔群进行研究,选择合理的桥梁结构以满足无缝道岔的布置要求。研究结论:通过对无砟轨道无缝线路车站咽喉区道岔连续梁结构形式研究,总结出道岔区桥梁结构形式选择的控制因素;为设计出能满足无砟轨道无缝道岔受力及变形要求的结构需重点解决如下问题:(1)确定无砟轨道无缝道岔对桥梁结构变形及梁缝位置的要求。(2)根据无砟轨道无缝道岔对桥梁结构梁缝处钢轨横向相对位移限值的要求,确定合理的梁跨横向布置。(3)根据确定的梁跨结构形式,建立无缝道岔-桥梁-墩台一体化力学模型,计算岔区轨道、梁体和下部结构的工作状态。(4)做梁部结构整体及局部分析。  相似文献   

19.
对典型案例的桥上咽喉区无缝道岔群的温度力、道岔部件相对位移和传力件的剪力进行了计算,并与普通桥上无缝线路的温度力进行了对比分析。计算结果表明:桥上无缝道岔较一般区间桥上无缝线路钢轨附加力明显增大,桥上无缝道岔设计应同时兼顾道岔与桥梁孔跨布置;典型案例中的道岔尖轨、心轨位移及限位装置的结构强度均可满足其限值要求。  相似文献   

20.
建立了无砟轨道线桥墩一体化计算模型,用数值模拟法,以一组60 kg/m钢轨客运专线18号可动心轨道岔布置在连续梁上为例,通过两种类型("门"形筋混凝土道床、带限凸台的道床板)无砟轨道桥上无缝道岔与有砟轨道桥上无缝道岔基本轨温度附加力、基本轨伸缩位移的比较,表明:无砟轨道桥上无缝道岔温度附加力分布规律、钢轨位移分布规律与有砟轨道桥上无缝道岔相似,"门"形筋及带限位凸台无砟轨道桥上无缝道岔因道床阻力大,尖轨及心轨相对道岔板的伸缩位移要小;对于带限位凸台的无砟轨道结构计算结果表明:单个凸台的支座刚度>250 kN/mm时,凸台支座胶垫的压缩量<1 mm.道岔板不同温度变化幅度的计算结果表明,随着道岔板日温差增大,基本轨温度附加力、伸缩位移、翼轨末端间隔铁受力、直尖轨尖端相对道岔位移、转辙器道岔板受力、辙叉道岔板受力均随之减小,而心轨尖端相对道岔板位移、导曲线道岔板受力、连续梁固定墩受力则随之增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号