首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
从电芯、模块和系统总成这3个层次分别介绍了动力电池系统高压电绝缘设计和绝缘测试的方法与要求,并简单介绍了新能源汽车实时高压电绝缘电阻检测原理。  相似文献   

2.
电动汽车绝缘电阻在线监测方法   总被引:2,自引:0,他引:2  
李景新  樊彦强  姜久春  陈弘 《汽车工程》2006,28(10):884-887
提出通过测量电动汽车直流系统正负母线对电底盘的电压来实时监测绝缘状况的方法。对影响测量精度的主要因素进行相应分析,并提出了提高精度的措施。设计了在线监测系统,并进行了实际装车试验。试验结果表明系统符合预期的设计精度要求,对故障情况可以及时报警,能够较好地完成实时监测电动汽车绝缘性能的任务。  相似文献   

3.
为更直观地监测动力电池管理系统的实时数据,设计一款基于LabVIEW的电动汽车动力电池管理系统测试平台,可以展示动力电池管理系统的工作状态。该系统采用主流新能源磷酸铁锂动力电池包,总容量80V50Ah一体式电池管理,具有主从通信、外部通信、状态估算、安全管理、充放电管理、控制输出、控制输入、总压检测、绝缘检测、单体电压采集、温度采集等功能。  相似文献   

4.
设计一种电流信号注入方式的电动汽车新型绝缘检测装置,通过在高压系统和车辆底盘之间注入一个电流信号,在高压系统、车辆底盘、漏电电阻、采样电阻和电流源之间形成一个测量回路,检测测量回路中取样电阻上产生的电压信号,并进行运算得到绝缘电阻阻值。实际测试表明,系统工作可靠,测量精度高,可有效在线实时监测车辆的绝缘性能,保障行车安全。  相似文献   

5.
针对某款增程式纯电动汽车的动力电池高压电安全管理系统进行了分析和研究,对高压继电器的工作状态监控方法、高压电上下电流程的充电唤醒和退出流程、绝缘检测方法和特殊情况下的动力电池安全防护系统设计进行了针对性研究。实车试验验证结果表明,所设计的动力电池安全防护系统能够有效的保障高压用电完全,具有良好的抗干扰性,满足设计要求。  相似文献   

6.
本文对车用动力电池的高压继电器的控制技术进行分析和研究,在对动力电池继电器的控制要求分析的基础上,深入探讨继电器的预充电、继电器粘连、绝缘检测监控等保护功能,进而合理设计继电器的高压上电流程管理、高压下电流程管理和高压继电器的状态监测方案和思路,以保障继电器的安全使用。  相似文献   

7.
近几年来,新能源汽车在我国的普及率越来越高,汽车维修人员只有加强相关技术的研究与学习,才能不被时代所淘汰。一般情况下,新能源汽车的动力电池电压都在300V以上,所以必须要对其高压线束绝缘的可靠性进行严格的控制。只有这样,才能够为驾乘人员以及维修人员的生命安全提供保障。基于此,本文重点针对新能源汽车高压绝缘监控原理进行了详细的分析,同时还指出了相应的维修要点,以供参考。  相似文献   

8.
电动汽车高压电池与整车车身之间的绝缘性能影响整车运行的可靠性和司乘人身安全。绝缘电阻的阻值反映了电气设备绝缘性能好坏,传统的绝缘电阻被动检测方法仅能快速判断出高压电池正负极对车身地绝缘电阻变化趋势,却无法计算出绝缘电阻值,甚至存在无法识别故障的风险。论文提出了一种基于全桥隔离检测电路的主动绝缘检测方法,能够准确计算出高压电池正负极对车身地的等效绝缘电阻值,通过预设绝缘电阻阈值和故障诊断机制判断是否发生绝缘故障,并通过Simulink仿真,进一步验证了检测方法的可行性。  相似文献   

9.
孙晓雁 《时代汽车》2022,(4):118-119
激光焊接是方形和软包动力电池模组制造过程中的关键工艺,焊接过程中产生的缺陷将会影响电池的过流能力和连接强度,降低电池包使用寿命,严重的将导致安全事故.因此动力电池模组激光焊接的过程实时监测和焊缝质量的无损检测方法是非常重要的研究对象.  相似文献   

10.
近年来,随着我国经济社会的发展和城市化进程的不断推进,汽车保有量连创新高。汽车给人们的生活带来方便的同时,它的尾气排放尤其是颗粒物的排放给大气环境造成了严重的污染。文章针对日前越来越严重的汽车尾气污染问题,分析了5030 SHARP监测仪的监测原理以及监测的方式。针对5030 SHARP监测仪各个监测项目的工作方式及使用特点,建立起了汽车尾气排放颗粒物的监测方法设计,进一步规范了汽车排放颗粒物检测5030SHARP监测仪的结构布局,重点介绍了检测设备硬件结构以及使用的软件流程。为汽车排放物监测的设计提供可靠参考,具有重要的理论意义和推广使用价值。  相似文献   

11.
动力电池作为新能源汽车的核心部件,对于新能源汽车安全性有着重要影响。目前,动力电池由于其内部电化学反应复杂多样,单体热失控现象尚无法完全避免。因此,动力电池热失控早期安全检测十分必要。然而,传统的温度、电压等安全性监测方法难以实现早期预警,而交流阻抗等创新性方法由于成本和准确度问题尚无法商业化应用。近期,研究发现气体相对于温度、电压、爬电距离等参数具有更短的响应时间。因此,通过产气现象早期监测动力电池热安全事件具有重要的研究价值和现实意义。本文系统介绍了通过产气成分早期监测动力电池热失控的原理、验证结果以及优缺点,并讨论了该项技术应用于动力电池产品的可行性及待解决问题,为动力电池安全性设计工作提供参考。  相似文献   

12.
针对某纯电动乘用车的使用要求,设计了基于风冷内循环结构的18650动力电池系统,研究和分析了18650动力电池的结构安全性、热管理安全性和阻燃与绝缘安全性。以该18650动力电池的试验数据为基础,结合理论计算公式,建立了18650动力电池的生热仿真计算模型,对电池风冷内循环系统的流场进行了分析计算,根据仿真计算结果优化了电池箱内部流场设计。通过实车试验和低温加热均衡试验,验证了基于风冷模式的18650动力电池系统的安全性。  相似文献   

13.
高压绝缘检测系统用于高压直流系统的绝缘状态诊断。从混合动力控制原理和高压回路出发,介绍分析了高压绝缘的在线检测技术。  相似文献   

14.
<正>(接上期)五、动力系统常见故障及处理方法1.动力电池系统电动汽车中高压系统的功能是确保整车系统动力电能的传输,并随时检测整个高压系统的绝缘故障、断路故障、接地故障和高压故障等,负担着确保整车设备和人员安全的首要任务,也是电动汽车产业化的关键技术之一。电动汽车的主要部件——动力电池系统属于高压部件,其设计的好坏直接影响着整车安全性及可靠性,动力电池的安装位置如图4所示。  相似文献   

15.
随着环境与能源危机加剧,新能源纯电动汽车应运而生。电动汽车的运行离不开其高压系统。文章主要介绍新能源汽车高压系统中动力电池绝缘故障、预充电故障的失效模式及维修方法,为售后相关人员提供一定的理论指导,从而推动售后市场更好的发展。  相似文献   

16.
混合动力电动汽车电池在线监控系统的设计及应用   总被引:1,自引:1,他引:0  
李国洪  田静  刘鲁源 《汽车工程》2005,27(2):151-154
在HEV和动力镍氢电池试验研究的基础上,开发了HEV动力电池在线监测与控制系统。该系统以单片机为核心,可有效地实时监测动力电池的各种运行参数:电池SOC、总电压、电池包内特征点温度、充放电电流;判断电池的状况及故障诊断;具有CAN通信和故障报警功能,系统运行稳定、可靠。  相似文献   

17.
针对“碳达峰”“碳中和”背景下的车用动力电池管理,提出了一种孪生数据驱动的动力电池全生命周期管理新模式,建立了数字孪生驱动的动力电池全生命周期管理架构,详细阐述了该架构运行机理。以孪生数据为核心,从动力电池设计、制造、使用、再制造、梯次利用、回收再生共6个场景对数字孪生技术在动力电池上的应用进行了阐述,并对其中应用的关键技术进行了分析。研究认为数字孪生驱动的动力电池全生命周期管理能对动力电池制造、运行、维护提供实时反馈和保障,为动力电池绿色低碳设计、安全高效设计的全局最优解提供路径,通过提高设计质量,能有效实现动力电池全生命周期管理的良性循环,虽然一些关键技术尚待突破,但数字孪生技术在动力电池全生命周期管理上的应用具有良好前景。  相似文献   

18.
为提高电动汽车用锂离子动力电池单体间的一致性及其能量利用率,需对电池单体或在模组间进行电量均衡。在研究动力电池组主动均衡策略的基础上,对均衡系统进行仿真建模,得到了动力电池电量、均衡时间与反激式直流转换器通断间的关系,并根据仿真分析结果搭建试验平台进行验证。验证结果表明,设计开发的动力电池均衡管理系统可实时检测电池单体的情况,并实现可编程式电池能量主动均衡,具有良好的均衡效果。  相似文献   

19.
根据电动汽车高压电力驱动系统的结构,参考电动汽车安全法规要求,设计了电动汽车高压电力安全管理系统;分析研究5种典型的高压电力系统故障、危害和对应的处理措施,重点研究了动力电池高压电安全管理系统的功能与设计。基于CAN总线技术对电动汽车高压电力驱动系统状态和关键电气参数进行实时监测,结果证明所设计的电动汽车高压电安全管理系统具有良好的准确性和鲁棒性。  相似文献   

20.
为提高商用车动力电池的安全性和可靠性,保证车辆安全平稳地行驶,开发一套动力电池的故障诊断系统。该系统基于SAE J1939协议选取诊断参数组,搭建Simulink诊断策略模型,并通过CANoe完成系统的仿真测试。测试结果表明:开发的故障诊断系统能够对商用车动力电池的实时数据进行故障分析及处理,实现对动力电池故障诊断功能,保证车辆的行驶安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号