首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times.  相似文献   

2.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

3.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

4.
Intelligent transportation systems (ITS) have been used to alleviate congestion problems arising due to demand during peak periods. The success of ITS strategies relies heavily on two factors: 1) the ability to accurately estimate the temporal and spatial distribution of travel demand on the transportation network during peak periods, and, 2) providing real‐time route guidance to users. This paper addresses the first factor. A model to estimate time dependent origin‐destination (O‐D) trip tables in urban areas during peak periods is proposed. The daily peak travel period is divided into several time slices to facilitate simulation and modeling. In urban areas, a majority of the trips during peak periods are work trips. For illustration purposes, only peak period work trips are considered in this paper. The proposed methodology is based on the arrival pattern of trips at a traffic analysis zone (TAZ) and the distribution of their travel times. The travel time matrix for the peak period, the O‐D trip table for the peak period, and the number of trips expected to arrive at each TAZ at different work start times are inputs to the model. The model outputs are O‐D trip tables for each time slice in the peak period. 1995 data for the Las Vegas metropolitan area are considered for testing and validating the model, and its application. The model is reasonably robust, but some lack of precision was observed. This is due to two possible reasons: 1) rounding‐off, and, 2) low ratio of total number of trips to total number of O‐D pair combinations. Hence, an attempt is made to study the effect of increasing this ratio on error estimates. The ratio is increased by multiplying each O‐D pair trip element with a scaling factor. Better estimates were obtained. Computational issues involved with the simulation and modeling process are discussed.  相似文献   

5.
In the last two decades, the growing need for short‐term prediction of traffic parameters embedded in a real‐time intelligent transportation systems environment has led to the development of a vast number of forecasting algorithms. Despite this, there is still not a clear view about the various requirements involved in modelling. This field of research was examined by disaggregating the process of developing short‐term traffic forecasting algorithms into three essential clusters: the determination of the scope, the conceptual process of specifying the output and the process of modelling, which includes several decisions concerning the selection of the proper methodological approach, the type of input and output data used, and the quality of the data. A critical discussion clarifies several interactions between the above and results in a logical flow that can be used as a framework for developing short‐term traffic forecasting models.  相似文献   

6.
CDAM is a new computer program for solving the combined trip distribution and assignment model for multiple user classes, which enables transport planners to estimate consistent Origin-Destination (O-D) matrices and equilibrium traffic flows simultaneously if the trip production and attraction of each user class at zone centroids are available. This paper reports an application of CDAM to the central Kowloon study area in Hong Kong. The coefficients of the model related to the components of generalized costs are calibrated on 1986 travel data. A comparison of results of CDAM and a version of MicroTRIPS models of transportation demand in Hong Kong are presented. Finally, some conclusions are drawn and the advantage of the CDAM are discussed.  相似文献   

7.
Project promoters, forecasters, and managers sometimes object to two things in measuring inaccuracy in travel demand forecasting: (1) using the forecast made at the time of making the decision to build as the basis for measuring inaccuracy and (2) using traffic during the first year of operations as the basis for measurement. This paper presents the case against both objections. First, if one is interested in learning whether decisions about building transport infrastructure are based on reliable information, then it is exactly the traffic forecasted at the time of making the decision to build that is of interest. Second, although ideally studies should take into account so-called demand “ramp up” over a period of years, the empirical evidence and practical considerations do not support this ideal requirement, at least not for large-N studies. Finally, the paper argues that large samples of inaccuracy in travel demand forecasts are likely to be conservatively biased, i.e., accuracy in travel demand forecasts estimated from such samples would likely be higher than accuracy in travel demand forecasts in the project population. This bias must be taken into account when interpreting the results from statistical analyses of inaccuracy in travel demand forecasting.  相似文献   

8.
This paper suggests using a proportional hazard model to predict personal income, for the purpose of imputing missing income data in household travel surveys. The model has a hazard function that comprises two multiplicative components: (1) a non-parametric baseline hazard function that is dependent only on the income level and (2) a function that is dependent only on the other personal attributes of the survey respondents (excluding income). To estimate and validate the model, data is drawn from a travel characteristics survey conducted in Hong Kong in year 2001. The model is found to have a much higher accuracy when compared with a conventional ordered probit model based on the assumption that the logarithm of income is normally distributed.
C. O. TongEmail:

C.·O. Tong   is an Associate Professor at the Department of Civil Engineering, The University of Hong Kong. He received his B.Sc. (Eng.) degree from the University of Hong Kong, M.Sc. (Transportation Engineering) degree from Leeds University and Ph.D. degree from Monash University. His research interests are in transport demand modeling and dynamic network modeling. Jackie K. L. Lee   worked as a Research Assistant at the Department of Civil Engineering, The University of Hong Kong during the period from March 2004 to April 2005. She received her B.Eng. and M.Eng. degrees in Civil Engineering from the Hong Kong Polytechnic University. She is a Chartered Engineer and is also Corporate Members of the Hong Kong Institution of Engineers and the Institution of Structural Engineers.  相似文献   

9.
This paper proposes an elastic demand network equilibrium model for networks with transit and walking modes. In Hong Kong, the multi‐mode transit system services over 90% of the total journeys and the demand on it is continuously increasing. Transit and walking modes are related to each other as transit passengers have to walk to and from transit stops. In this paper, the multi‐mode elastic‐demand network equilibrium problem is formulated as a variational inequality problem where the combined mode and route choices are modeled in a hierarchical logit structures and the total travel demand for each origin‐destination pair is explicitly given by an elastic demand function. In addition, the capacity constraint for transit vehicles and the effects of bi‐directional flows on walkways are considered in the proposed model. All these congestion effects are taken into account for modeling the travel choices. A solution algorithm is developed to solve the multi‐mode elastic‐demand network equilibrium model. It is based on a Block Gauss‐Seidel decomposition approach coupled with the method of successive averages. A numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

10.
Uncertainties related to demand model system outputs is an important issue in travel demand models. This paper focuses on uncertainties arisen from the fact that models are estimated on a sample of the population (and not the whole population). Forecasting systems can be quite complex, and may contain procedures that not easily permit analytically derived statistical measures of uncertainty. In this paper, the possibilities to use computer-intensive numerical methods to compute statistical measures for very complex systems, without being bound to an analytical approach, are explored. Here, the bootstrap method is used to obtain statistical measures of outputs produced by the forecasting system SAMPERS. The SAMPERS system is used by Swedish transport authorities. The bootstrap method is briefly described as well as the procedure of applying bootstrap on the SAMPERS system. Numerical results are presented for selected forecast results at different levels such as total traffic demand, origin–destination demand, train line demand and the demand on specific links. Also, the uncertainty related to the value of time estimate is analysed.  相似文献   

11.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Passenger transportation in most large cities relies on an efficient mass transit system, whose line configuration has direct impacts on the system operating cost, passenger travel time and line transfers. Unfortunately, the interplay between transit line configuration and passenger line assignment has been largely ignored in the literature. This paper presents a model for simultaneous optimization of transit line configuration and passenger line assignment in a general network. The model is formulated as a linear binary integer program and can be solved by the standard branch and bound method. The model is illustrated with a couple of minimum spanning tree networks and a simplified version of the general Hong Kong mass transit railway network.  相似文献   

13.
Accurate and timely traffic forecasting is crucial to effective management of intelligent transportation systems (ITS). To predict travel time index (TTI) data, we select six baseline individual predictors as basic combination components. Applying the one‐step‐ahead out‐of‐sample forecasts, the paper proposes several linear combined forecasting techniques. States of traffic situations are classified into peak and non‐peak periods. Based on detailed data analyses, some practical guidance and comments are given in what situation a combined model is better than an individual model or other types of combined models. Indicating which model is more appropriate in each state, persuasive comparisons demonstrate that the combined procedures can significantly reduce forecast error rates. It reveals that the approaches are practically promising in the field. To the best of our knowledge, it is the first time to systematically investigate these approaches in peak and non‐peak traffic forecasts. The studies can provide a reference for optimal forecasting model selection in each period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The traffic-restraint congestion-pricing scheme (TRCPS) aims to maintain traffic flow within a desirable threshold for some target links by levying the appropriate link tolls. In this study, we propose a trial-and-error method using observed link flows to implement the TRCPS with the day-to-day flow dynamics. Without resorting to the origin–destination (O–D) demand functions, link travel time functions and value of time (VOT), the proposed trial-and-error method works as follows: tolls for the traffic-restraint links are first implemented each time (trial) and they are subsequently updated using observed link flows in a disequilibrium state at any arbitrary time interval. The trial-and-error method has the practical significance because it is necessary only to observe traffic flows on those tolled links and it does not require to wait for the network flow pattern achieving the user equilibrium (UE) state. The global convergence of the trial-and-error method is rigorously demonstrated under mild conditions. We theoretically show the viability of the proposed trial-and-error method, and numerical experiments are conducted to evaluate its performance. The result of this study, without doubt, enhances the confidence of practitioners to adopt this method.  相似文献   

15.
Recent advances in traffic control methods have led to flexible control strategies for use in an adaptive traffic control system (ATCS). ATCS aims at controlling the imminent traffic, which is yet to arrive and hence not known perfectly. Therefore, volume prediction is an essential part. Associated with the prediction are two aspects: resolution and accuracy. Recent studies indicate a tradeoff between prediction resolution and accuracy: finer resolutions, larger errors. It is imperative to study the relationship and tradeoff between the control strategy, prediction resolution, and its associated error, which are crucial to the development of ATCS. This study investigates this relationship through an extensive simulation of scenarios in Hong Kong with a recently developed dynamic traffic control model, DISCO. Based on the Hong Kong scenarios conducted with DISCO, the major findings include: (i) the importance of resolution outweighs that of error; (ii) dynamic timing plans generally outperform time‐invariant timing plans; (iii) up to a certain extent, overestimated predictions lead to better results than underestimated predictions.  相似文献   

16.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

17.
A problem always found in developing countries is the lack of information required for short, medium and long term planning purposes due to money and time constraints. This becomes even more valuable for problems which require ‘quick-response’ treatment. A flexible model approach allows monitoring a long term plan in order to check its short term performance at regular intervals using easily-available data. If found necessary, changes to the plan may be evaluated and eventually implemented. For this reason, the approach is deemed appropriate for long term planning and project evaluation even in the case of rapid changes in land-use, socio-economic and population parameters usually occurs in most of developing countries. A key element of the approach is a system to update the forecasting model (in particular its trip distribution and mode choice elements) using low-cost and/or easily-available information. Traffic counts are particularly attractive to be used in developing countries for planning purposes. The estimation of public transport demand, particularly important for planning purposes, is an expensive and time consuming undertaking. The need for a low-cost method to estimate the public transport demand is therefore obvious. The objective of this paper is the development of methods and techniques for modelling the public transport demand using traffic (passenger) count information and other simple zonal-planning data. We will report on a family of aggregate model combined with a family of mode choice logit models which can be calibrated from traffic (passenger) counts and other low-cost data. The model examined was the Gravity (GR) model combined with the Multi-Nominal-Logit (MNL) model. Non-Linear-Least-Squares (NLLS) estimation method was used to calibrate the parameter of the combined model. The combined TDMC model and the calibration method have been implemented into a micro-computer package capable of dealing with the study area consisting of up to 300 zones, 3000 links and 6000 nodes. The approach has been tested using the 1988 Public Transport Data Survey in Bandung (Indonesia). The model was found to provide a reasonably good fit and the calibrated parameter can then be used for forecasting purposes. General conclusion regarding the advantageous and the applicability of the approach to other environments are given.  相似文献   

18.
The forecasting of short-term traffic flow is one of the key issues in the field of dynamic traffic control and management. Because of the uncertainty and nonlinearity, short-term traffic flow forecasting could be a challenging task. Artificial Neural Network (ANN) could be a good solution to this issue as it is possible to obtain a higher forecasting accuracy within relatively short time through this tool. Traditional methods for traffic flow forecasting generally based on a separated single point. However, it is found that traffic flows from adjacent intersections show a similar trend. It indicates that the vehicle accumulation and dissipation influence the traffic volumes of the adjacent intersections. This paper presents a novel method, which considers the travel flows of the adjacent intersections when forecasting the one of the middle. Computational experiments show that the proposed model is both effective and practical.  相似文献   

19.
Cross‐border passengers from Hong Kong to Shenzhen by the east Kowloon‐Canton Railway (KCR) through the Lo Wu customs exceed nearly 200 thousand on a special day such as a day during the Chinese Spring Festival. Such heavy passenger demand often exceeds the processing and holding capacity of the Lo Wu customs for many hours a day. Thus, passengers must be metered off at all entrance stations along the KCR line through ticket rationing to restrain the number of passengers waiting at Lo Wu within its safe holding capacity. This paper proposes an optimal control strategy and model to deal with this passenger crowding and control problem. Because the maximum passenger checkout rate at Lo Wu is fixed, total passenger waiting time is not affected by the control strategy for given time‐dependent arriving rates at each station. An equity‐based control strategy is thus proposed to equalize the waiting times of passengers arriving at all stations at the same time. This equity is achieved through optimal allocation of the total quota of tickets to all entrance stations for each train service. The total ticket quota for each train service is determined such that the capacity constraint of the passenger queue at Lo Wu is satisfied. The control problem is formulated as a successive linear programming problem and demonstrated for the KCR system with partially simulated data.  相似文献   

20.
This paper estimates the price and income elasticities of air cargo demand and examines how they may change after the 2008 financial crisis. Using a set of time series data, we simultaneously estimate the aggregated demand and supply functions of air cargo at Hong Kong International Airport (HKIA). We find that during the entire sampling period of 2001–2013, the price elasticity for air cargo transport demand at HKIA ranges from −0.74 to −0.29, suggesting that air cargo demand in Hong Kong reacts negatively to price (as expected) but does not appear to be very sensitive to price. The income elasticity ranges from 0.29 to 1.47 and appears sensitive to seasonality adjustment approaches. However, in terms of the speed of changes, air cargo demand changes much faster than overall economy, indicating the presence of a pro-cyclical pattern of air cargo traffic with respect to the overall economy. Our analysis shows that air cargo demand becomes more sensitive to changes in both price and income after 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号