首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper examines traveller attitudes and responses towards disruption from weather and natural events. An internet-based travel behaviour survey was conducted with more than 2000 respondents in London and Glasgow. Of these respondents, 740 reported information on over 1000 long distance trips affected by extreme weather and natural events over the previous three years. Results show respondents are generally cautious towards travelling during extreme weather events. For a slight majority in the case of air and public transport, and a greater one in the case of car, travellers did not considerably alter their travel plan following the disruption. This was explained not only by less disruptive weather conditions (with heavy snow and volcanic ash being the most disruptive) and impact, but also by the relative importance of their trips. Differences between transport modes were not substantial. Business trips sometimes appeared to give travellers more flexibility, some other times not. Origin and destination did have an impact on reaction, as well as the presence of children whilst travelling. Mixed results were obtained about socio-economic and attitudinal variables. Age in particular did not appear to have a significant effect. Whilst most respondents did acknowledge no external influence in their decision, results showed an important contribution of transport organisation staff, as well as home and mobile internet technology. A limited but still considerable number of respondents indicated their closest friends/relatives as the main influence of their decisions. The results will help planners deploy strategies to mitigate the negative effects of weather related disruptions.  相似文献   

2.
Transport systems in real cities are complex with many modes of transport sharing and competing for limited road space. This work intends to understand how space distributions for modes and interactions among modes affect network traffic performance. While the connection between performance of transport systems and general land allocation is the subject of extensive research, space allocation for interacting modes of transport is an open research question. Quantifying the impact of road space distribution on the performance of a congested multimodal transport system with a dynamic aggregated model remains a challenge. In this paper, a multimodal macroscopic fundamental diagram (MFD) is developed to represent the traffic dynamics of a multimodal transport system. Optimization is performed with the objective of minimizing the total passenger hours traveled (PHT) to serve the total demand by redistributing road space among modes. Pricing strategies are also investigated to provide a higher demand shift to more efficient modes. We find by an application to a bi-modal two-region city that (i) the proposed model captures the operational characteristics of each mode, and (ii) optimal dynamic space distribution strategies can be developed. In practice, the approach can serve as a physical dynamic model to inform space distribution strategies for policy makers with different goals of mobility.  相似文献   

3.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Milan Janić 《Transportation》2018,45(4):1101-1137
This paper deals with modelling the dynamic resilience of rail passenger transport networks affected by large-scale disruptive events whose impacts deteriorate the networks’ planned infrastructural, operational, economic, and social-economic performances represented by the selected indicators. The indicators of infrastructural performances refer to the physical and operational conditions of the networks’ lines and stations, and supportive facilities and equipment. Those of the operational performances include transport services scheduled along particular routes, their seating capacity, and corresponding transport work/capacity. The indicators of economic performances include the costs of cancelled and long-delayed transport services imposed on the main actors/stakeholder involved—the rail operator(s) and users/passengers. The indicators of social-economic performances reflect the compromised accessibility and consequent prevention of the user/passenger trips and their contribution to the local/regional/national Gross Domestic Product. Modeling resulted in developing a methodology including two sets of analytical models for: (1) assessing the dynamic resilience of a given rail network, i.e., before, during, and after the impacts of disruptive event(s); and (2) estimation of the indicators of particular performances as the figures-of-merit for assessing the network’s resilience under the given conditions. As such, the methodology could be used for estimating the resilience of different topologies of rail passenger networks affected by past, current, and future disruptive events, the latest according to the “what-if” scenario approach and after introducing the appropriate assumptions. The methodology has been applied to a past case—the Japanese Shinkansen HSR network affected by a large-scale disruptive event—the Great East Japan Earthquake on 11 March 2011.  相似文献   

5.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes.  相似文献   

6.
This paper deals with developing a methodology for estimating the resilience, friability, and costs of an air transport network affected by a large-scale disruptive event. The network consists of airports and airspace/air routes between them where airlines operate their flights. Resilience is considered as the ability of the network to neutralize the impacts of disruptive event(s). Friability implies reducing the network’s existing resilience due to removing particular nodes/airports and/or links/air routes, and consequently cancelling the affected airline flights. The costs imply additional expenses imposed on airports, airlines, and air passengers as the potentially most affected actors/stakeholders due to mitigating actions such as delaying, cancelling and rerouting particular affected flights. These actions aim at maintaining both the network’s resilience and safety at the acceptable level under given conditions.Large scale disruptive events, which can compromise the resilience and friability of a given air transport network, include bad weather, failures of particular (crucial) network components, the industrial actions of the air transport staff, natural disasters, terrorist threats/attacks and traffic incidents/accidents.The methodology is applied to the selected real-life case under given conditions. In addition, this methodology could be used for pre-selecting the location of airline hub airport(s), assessing the resilience of planned airline schedules and the prospective consequences, and designing mitigating measures before, during, and in the aftermath of a disruptive event. As such, it could, with slight modifications, be applied to transport networks operated by other transport modes.  相似文献   

7.
Three weather sensitive models are used to explore the relationship between weather and home-based work trips within the City of Toronto, focusing on active modes of transportation. The data are restricted to non-captive commuters who have the option of selecting among five basic modes of auto driver, auto passenger, transit, bike and walk. Daily trip rates in various weather conditions are assessed. Overall, the results confirm that impact of weather on active modes of transportation is significant enough to deserve attention at the research, data collection and planning levels.  相似文献   

8.
Logit模型是一种较为成熟的旅客运输分担率分析方法,它在旅客运输领领域有着广泛的应用。参照绿色经济的定义,首先,本文分析各运输方式的安全性效用、经济性效用、时效性效用、准时性效用、方便性效用、舒适性效用和绿色性效用7个服务特征属性并建立广义效用函数;其次,研究高速铁路客流分担率模型;再次,运用相关数据及最大似然估计法来确定模型的参数;最后,以武汉~广州间各运输方式的客流分担率来研究该模型的应用。  相似文献   

9.
Robust public transport networks are important, since disruptions decrease the public transport accessibility of areas. Despite this importance, the full passenger impacts of public transport network vulnerability have not yet been considered in science and practice. We have developed a methodology to identify the most vulnerable links in the total, multi-level public transport network and to quantify the societal costs of link vulnerability for these identified links. Contrary to traditional single-level network approaches, we consider the integrated, total multi-level PT network in the identification and quantification of link vulnerability, including PT services on other network levels which remain available once a disturbance occurs. We also incorporate both exposure to large, non-recurrent disturbances and the impacts of these disturbances explicitly when identifying and quantifying link vulnerability. This results in complete and realistic insights into the negative accessibility impacts of disturbances. Our methodology is applied to a case study in the Netherlands, using a dataset containing 2.5 years of disturbance information. Our results show that especially crowded links of the light rail/metro network are vulnerable, due to the combination of relatively high disruption exposure and relatively high passenger flows. The proposed methodology allows quantification of robustness benefits of measures, in addition to the costs of these measures. Showing the value of robustness, our work can support and rationalize the decision-making process of public transport operators and authorities regarding the implementation of robustness measures.  相似文献   

10.
This paper reports the insights into environmental impacts of the ongoing transformative land use and transport developments in Greater Beijing, from a new suite of dynamic land use, spatial equilibrium and strategic transport models that is calibrated for medium to long term land use and transport predictions. The model tests are focused on urban passenger travel demand and associated emissions within the municipality of Beijing, accounting for Beijing’s land use and transport interactions with Tianjin, Hebei and beyond. The findings suggests that background trends of urbanization, economic growth and income rises will continue to be very powerful drivers for urban passenger travel demand across all main modes of transport beyond 2030. In order to achieve the dual policy aims for a moderately affluent and equitable nation and reducing the absolute levels of urban transport emissions by 2030, road charging and careful micro-level coordination between land use, built form and public transport provision may need to be considered together for policy implementation in the near future.  相似文献   

11.
Public transport networks (PTN) are subject to recurring service disruptions. Most studies of the robustness of PTN have focused on network topology and considered vulnerability in terms of connectivity reliability. While these studies provide insights on general design principles, there is lack of knowledge concerning the effectiveness of different strategies to reduce the impacts of disruptions. This paper proposes and demonstrates a methodology for evaluating the effectiveness of a strategic increase in capacity on alternative PTN links to mitigate the impact of unexpected network disruptions. The evaluation approach consists of two stages: identifying a set of important links and then for each identified important link, a set of capacity enhancement schemes is evaluated. The proposed method integrates stochastic supply and demand models, dynamic route choice and limited operational capacity. This dynamic agent-based modelling of network performance enables to capture cascading network effects as well as the adaptive redistribution of passenger flows. An application for the rapid PTN of Stockholm, Sweden, demonstrates how the proposed method could be applied to sequentially designed scenarios based on their performance indicators. The method presented in this paper could support policy makers and operators in prioritizing measures to increase network robustness by improving system capacity to absorb unexpected disruptions.  相似文献   

12.
Transport networks underpin economic activity by enabling the movement of goods and people. During extreme weather events transport infrastructure can be directly or indirectly damaged, posing a threat to human safety, and causing significant disruption and associated economic and social impacts. Flooding, especially as a result of intense precipitation, is the predominant cause of weather-related disruption to the transport sector. Existing approaches to assess the disruptive impact of flooding on road transport fail to capture the interactions between floodwater and the transport system, typically assuming a road is fully operational or fully blocked, which is not supported by observations. In this paper we develop a relationship between depth of standing water and vehicle speed. The function that describes this relationship has been constructed by fitting a curve to video analysis supplemented by a range of quantitative data that has be extracted from existing studies and other safety literature. The proposed relationship is a good fit to the observed data, with an R-squared of 0.95. The significance of this work is that it is simple to incorporate our function into existing transport models to produce better estimates of flood induced delays and we demonstrate this with an example from the 28th June 2012 flood in Newcastle upon Tyne, UK.  相似文献   

13.
With climate change high on the political agenda, weather has emerged as an important issue in travel behavioural research and urban planning. While various studies demonstrate profound effects of weather on travel behaviours, limited attention has been paid to subjective weather experiences and the psychological mechanisms that may (partially) underlie these effects. This paper integrates theoretical insights on outdoor thermal comfort, weather perceptions and emotional experiences in the context of travel behaviour. Drawing on unique panel travel diary data for 945 Greater Rotterdam respondents (The Netherlands), this paper aims to investigate how and to what extent weather conditions affect transport mode choices, outdoor thermal perceptions and emotional travel experiences. Our findings point out that observed dry, calm, sunny and warm but not too hot weather conditions stimulate cycling over other transport modes and – via mechanisms of thermal and mechanical comfort – lead to more pleasant emotions during travel. Overall, public transport users have less pleasant emotional experiences than users of other transport modes, while active mode users appear most weather sensitive. The theoretical contributions and empirical findings are discussed in the context of climate change and climate-sensitive urban planning.  相似文献   

14.
This paper presents a survey of the empirical literature on the effects of climate change and weather conditions on the transport sector. Despite mixed evidence on many issues, several patterns can be observed. On a global scale especially shifts in tourism and agricultural production due to increased temperatures may lead to shifts in passenger and freight transport. The predicted rise in sea levels and the associated increase in frequency and intensity of storm surges and flooding incidences may furthermore be some of the most worrying consequences of climate change, especially for coastal areas. Climate change related shifts in weather patterns might also cause infrastructure disruptions. Clear patterns are that precipitation affects road safety by increasing accident frequency but decreasing severity. Precipitation also increases congestion, especially during peak hours. Furthermore, an increased frequency of low water levels may considerably increase costs of inland waterway transport. Despite these insights, the net impact of climate change on generalised costs of the various transport modes are uncertain and ambiguous, with a possible exception for inland waterway transport.  相似文献   

15.
Passenger transportation in most large cities relies on an efficient mass transit system, whose line configuration has direct impacts on the system operating cost, passenger travel time and line transfers. Unfortunately, the interplay between transit line configuration and passenger line assignment has been largely ignored in the literature. This paper presents a model for simultaneous optimization of transit line configuration and passenger line assignment in a general network. The model is formulated as a linear binary integer program and can be solved by the standard branch and bound method. The model is illustrated with a couple of minimum spanning tree networks and a simplified version of the general Hong Kong mass transit railway network.  相似文献   

16.
Climate change (CC) potentially affects people travel behaviour, due to extreme weather conditions. This is particularly true for pedestrians, that are more exposed to weather conditions. Introducing the effect of this change in transport modelling allows to analyse and plan walking networks taking into consideration the climatic variable. The aim of this work is to develop a tool that can support planning and design of walking networks, by assessing the effects of actions oriented to increase resilience with respect to extreme weather conditions (CC adaptation).An integrated approach is used, thus combining transport and land-use planning concepts with elements of outdoor thermal comfort and network accessibility. Walking networks are analysed through centrality indexes, including thermal comfort aspects into a general cost function of links and weighted nodes. The method has been applied to the walking network inside the Campus of the University of Catania (Italy), which includes different functions and where pedestrian paths are barely used by people. Results confirm that this tool is sensitive to the variables representing weather conditions and it can measure the influence of CC adaptation measures (e.g. vegetation) on walking attitude and on the performance of the walking network.  相似文献   

17.
文章根据城乡道路覆盖城际、城市、城乡、镇村四级客运网络的生产特点,以城市公交、城际客运和农村客运为研究对象,将其应急处置对象分为运输在途不安全因素及不同态势突发事件。在此基础上,提出了科学合理的驾驶员和客运企业应对不安全因素和突发事件的系列规范,规范了驾驶员的安全行车要求和现场应急处置,以及客运企业的应急响应流程和响应措施。对进一步提升驾驶员和客运企业应对不安全因素和突发事件的处置能力,降低城乡道路客运安全事故发生率及事故后的人员伤亡和财产损失,具有重要的社会效益。  相似文献   

18.
Tavassoli  Ahmad  Mesbah  Mahmoud  Hickman  Mark 《Transportation》2020,47(5):2133-2156

This paper describes a practical automated procedure to calibrate and validate a transit assignment model. An optimization method based on particle swarm algorithm is adopted to minimize a defined error term. This error term which is based on the percentage of root mean square error and the mean absolute percent error encompasses deviation of model outputs from observations considering both segment level as well as the mode level and can be applied to a large scale network. This study is based on the frequency-based assignment model using the concept of optimal strategy while any transit assignment model can be used in the proposed methodological framework. Lastly, the model is validated using another weekday data. The proposed methodology uses automatic fare collection (AFC) data to estimate the origin–destination matrix. This study combines data from three sources: the general transit feed specification, AFC, and a strategic transport model from a large-scale multimodal public transport network. The South-East Queensland (SEQ) network in Australia is used as a case study. The AFC system in SEQ has voluminous and high quality data on passenger boardings and alightings across bus, rail and ferry modes. The results indicate that the proposed procedure can successfully develop a multi-modal transit assignment model at a large scale. Higher dispersions are seen for the bus mode, in contrast to rail and ferry modes. Furthermore, a comparison is made between the strategies used by passengers and the generated strategies by the model between each origin and destination to get more insights about the detailed behaviour of the model. Overall, the analysis indicates that the AFC data is a valuable and rich source in calibrating and validating a transit assignment model.

  相似文献   

19.
This paper measures the potential effects of low water levels on the Rhine and Danube navigation in the context of weather variability and a number of climate change scenarios. A long-term multimodal network transport analysis over the period 2005–2050 is presented; it analyzes the impact of changes on the water depth conditions on transport costs and the modal splits between three competing modes. The results indicate that the impact of climate change until 2050 should be limited.  相似文献   

20.

This paper presents an overview of some recent developments in and policy issues relating to integrated transport systems in the European Union (EU). Both goods and passenger transport systems are considered in the context of actions recently undertaken and supported by the EU. The paper considers the very general background of these systems at the EU scale and offers insights into some recent successful and promising policy, real-life, and research attainments. In addition, it attempts to identify some directions for future actions in fields such as transport policy, transport technology, transport economics and transport scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号