首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of high passenger density at bus stops, at rail stations, inside buses and trains are diverse. This paper examines the multiple dimensions of passenger crowding related to public transport demand, supply and operations, including effects on operating speed, waiting time, travel time reliability, passengers’ wellbeing, valuation of waiting and in-vehicle time savings, route and bus choice, and optimal levels of frequency, vehicle size and fare. Secondly, crowding externalities are estimated for rail and bus services in Sydney, in order to show the impact of crowding on the estimated value of in-vehicle time savings and demand prediction. Using Multinomial Logit (MNL) and Error Components (EC) models, we show that alternative assumptions concerning the threshold load factor that triggers a crowding externality effect do have an influence on the value of travel time (VTTS) for low occupancy levels (all passengers sitting); however, for high occupancy levels, alternative crowding models estimate similar VTTS. Importantly, if demand for a public transport service is estimated without explicit consideration of crowding as a source of disutility for passengers, demand will be overestimated if the service is designed to have a number of standees beyond a threshold, as analytically shown using a MNL choice model. More research is needed to explore if these findings hold with more complex choice models and in other contexts.  相似文献   

2.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   

3.
Cities around the world are trying out a multitude of transportation policy and investment alternatives with the aim of reducing car-induced externalities. However, without a solid understanding of how people make their transportation and residential location choices, it is hard to tell which of these policies and investments are really doing the job and which are wasting precious city resources. The focus of this paper is the determinants of car ownership and car use for commuting. Using survey data from 1997 to 1998 collected in New York City, this paper uses discrete choice econometrics to estimate a model of the choices of car ownership and commute mode while also modeling the related choice of residential location.The main story told by this analysis is that New Yorkers are more sensitive to changes in travel time than they are to changes in travel cost. The model predicts that the most effective ways to reduce both auto ownership and car commuting involve changing the relative travel times for cars and transit, making transit trips faster by increasing both the frequency and the speed of service and making auto trips slower – perhaps simply by allowing traffic congestion. Population density also appears to have a substantial effect on car ownership in New York.  相似文献   

4.
Qu Zhen  Shi Jing 《先进运输杂志》2016,50(8):1990-2014
This paper considers the train rescheduling problem with train delay in urban subway network. With the objective of minimizing the negative effect of train delay to passengers, which is quantified with a weighted combination of travel time cost and the cost of giving up the planned trips, train rescheduling model is proposed to jointly synchronize both train delay operation constraints and passenger behavior choices. Space–time network is proposed to describe passenger schedule‐based path choices and obtain the shortest travel times. Impatience time is defined to describe the intolerance of passengers to train delay. By comparing the increased travel time due to train delay with the passenger impatience time, a binary variable is defined to represent whether the passenger will give up their planned trips or not. The proposed train rescheduling model is implemented using genetic algorithm, and the model effectiveness is further examined through numerical experiments of real‐world urban subway train timetabling test. Duration effects of the train delay to the optimization results are analyzed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposes a new scheduled-based transit assignment model. Unlike other schedule-based models in the literature, we consider supply uncertainties and assume that users adopt strategies to travel from their origins to their destinations. We present an analytical formulation to ensure that on-board passengers continuing to the next stop have priority and waiting passengers are loaded on a first-come-first-serve basis. We propose an analytical model that captures the stochastic nature of the transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse weather. We adopt a mean variance approach that can consider the covariance of travel time between links in a space–time graph but still lead to a robust transit network loading procedure when optimal strategies are adopted. The proposed model is formulated as a user equilibrium problem and solved by an MSA-type algorithm. Numerical results are reported to show the effects of supply uncertainties on the travel strategies and departure times of passengers.  相似文献   

6.
The present study considers underground passengers and investigates the ways in which they spend their time during a trip of average length or shorter. Using a structured procedure that had been refined after a preliminary study, more than 1,700 passengers were observed in London. The results showed that even when the length of travel is very short (2–6 stops), underground passengers engage in several occupations, especially those involving the use of mobile Information and Communication Technologies. These occupations depend on the specific spatial and temporal conditions of the travel, as well as on gender and age. These results should be useful in designing travel services that enhance passengers’ experiences; they also suggest a criterion for comparing trips using different transportation modes (i.e., looking at the time point during the trip at which the ratio of active versus passive occupations changes).  相似文献   

7.
A comprehensive method for calculating and measuring Dependability of Personal Rapid Transit systems is derived and compared with the more common measure called Availability. Availability is the percentage of all revenue trips that are completed without interruption. It does not take into account the duration of delays of the passengers because of the diffiiculty of gathering the necessary information in conventional transit systems. In PRT systems, vehicle-hours of travel and of delay relate in a statistically simple way to person-hours of travel and of delay. Therefore, in such systems, it is practical to use the performance measure called Dependability that takes into account the inconveince of people as a result of delays. To form a bridge to present practice, it is recommended that both measures be calculated and compared in forthcoming PRT systems. With today's computer systems, this is easily accomplished.  相似文献   

8.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general.  相似文献   

9.
Abstract

Wheelchair-seated passengers on European and Swedish urban transit buses can travel rearwards, resting against a bulkhead, without the use of tie-down equipment. However, users sometimes disapprove of being the only passengers who have to travel rearwards, and also unrestrained. In order to investigate comfort and safety as perceived by wheelchair-seated bus passengers riding either forwards or rearwards, an experimental field study was carried out. Participating subjects were 31 wheelchair users and a group of 44 ambulant passengers. Each subject made two consecutive, identical 15-minute trips, randomly beginning either forwards or backwards, and interviews were conducted after each trip. During the trips, three-axis bus motion was recorded. The concept of categorization was used as a theoretical background and basis for discussion of the comfort and safety constructs. The results indicated that while the majority preferred the forward-facing position regarding comfort issues, a minority felt that the level of perceived safety was better. Wheelchair-seated passengers were more positive towards the rearward position than the ambulant group.  相似文献   

10.
11.
Wider deployment of alternative fuel vehicles (AFVs) can help with increasing energy security and transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain the same level of mobility as users of conventional vehicles while reducing energy use and emissions. Greater knowledge of AFV benefits can support consumers’ vehicle purchase and use choices. The Environmental Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory conditions, neglecting the attributes of drivers and vehicle types. While the EPA ratings using pre-designed and fixed driving cycles may be unbiased they are not necessarily precise, owning to large variations in real-life driving. Thus, to better predict fuel economy for individual consumers targeting specific types of vehicles, it is important to find driving cycles that can better represent consumers’ real-world driving practices instead of using pre-designed standard driving cycles. This paper presents a methodology for customizing driving cycles to provide convincing fuel economy predictions that are based on drivers’ characteristics and contemporary real-world driving, along with validation efforts. The methodology takes into account current micro-driving practices in terms of maintaining speed, acceleration, braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle Global Positioning System as part of a travel survey, a micro-trips (building block) library for California drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, made by 3000 drivers. To generate customized driving cycles, a new tool, known as Case Based System for Driving Cycle Design, is developed. These customized cycles can predict fuel economy more precisely for conventional vehicles vis-à-vis AFVs. This is based on a consumer’s similarity in terms of their own and geographical characteristics, with a sample of micro-trips from the case library. The AFV driving cycles, created from real-world driving data, show significant differences from conventional driving cycles currently in use. This further highlights the need to enhance current fuel economy estimations by using customized driving cycles, helping consumers make more informed vehicle purchase and use decisions.  相似文献   

12.
Ridesharing is quite a popular topic of discussion among transport authority personnel. It is perceived to be a viable alternative to classical modes of transportation, and receives a great deal of political support from transport planners. However, not much objective information is available on ridesharing behaviors. We use travel survey data to study the evolution of the ridesharing market in an urban area. Our study is based on data from four large-scale OD surveys conducted in the Greater Montreal Area (1987, 1993, 1998 and 2003). In the latest survey conducted in Montreal, car passengers were asked to identify the driver who gave them the opportunity to travel in this way. Their answers were classified according to the type of driver; for instance, a member of their household, a neighbor or a co-worker. We use this information to calibrate a model matching car passengers and car drivers belonging to the same household. This will be referred to as IHHR (intra-household ridesharing). Preliminary results reveal that approximately 70% of all trips made by car passengers are the result of IHHR. Furthermore, around 15% of those trips are questionable, in that they were exclusively generated for another individual’s purposes, consequently generating an additional trip for the journey back home. Moreover, this percentage increased over time. Objective data regarding ridesharing and its evolution in an urban area will undoubtedly help decision makers gain a clearer profile of this means of travel and help to realign attitudes on the issue.
Catherine MorencyEmail:
  相似文献   

13.
This paper explores the use of smartphone applications for trip planning and travel outcomes using data derived from a survey conducted in Halifax, Nova Scotia, in 2015. The study provides empirical evidence of relationships of smartphone use for trip planning (e.g. departure time, destination, mode choice, coordinating trips and performing tasks online) and resulting travel outcomes (e.g. vehicle kilometers traveled, social gathering, new place visits, and group trips) and associated factors. Several sets of factors such as socio-economic characteristics and travel characteristics are tested and interpreted. Results suggest that smartphone applications mostly influence younger individuals’ trip planning decisions. Transit pass owners are the frequent users of smartphone applications for trip planning. Findings suggest that transit pass owners commonly use smartphone applications for deciding departure times and mode choices. The study also identifies the limited impact of smartphone application use on reducing travel outcomes, such as vehicle kilometers traveled. The highest impact is in visiting new places (a 48.8% increase). The study essentially offers an original in-depth understanding of how smartphone applications are affecting everyday travel.  相似文献   

14.
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research.  相似文献   

15.
In this paper, we empirically test the viability of a flow-based approach as an alternative to transport accessibility measurement. To track where commuters travel from and to (but not commute times), we use transactional smartcard data from residents in Singapore to construct the (daily) spatial network of trips generated. We use the Place Rank method to demonstrate the viability of the flow-based approach to study accessibility. We compute the Place Rank of each of 44 planning areas in Singapore. Interestingly, even though the spatial network is constructed using only origin–destination information, we find that the travel time of the trips out of each planning area generally decreases as the area’s Place Rank increases. The same is also the case for in-vehicle time, number of transfers in the network and transfer time. This shows that a flow-based approach can be used to measure the notion of accessibility, which is traditionally assessed using travel time information in the system. We also compare Place Rank with other indicators, namely, bus stop density, eigenvector centrality, clustering coefficient and typographical coefficient to evaluate an area’s accessibility. The results show that these indicators are not as effective as the Place Rank method.  相似文献   

16.
Interest in vehicle automation has been growing in recent years, especially with the very visible Google car project. Although full automation is not yet a reality there has been significant research on the impacts of self-driving vehicles on traffic flows, mainly on interurban roads. However, little attention has been given to what could happen to urban mobility when all vehicles are automated. In this paper we propose a new method to study how replacing privately owned conventional vehicles with automated ones affects traffic delays and parking demand in a city. The model solves what we designate as the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP), which dynamically assigns family trips in their automated vehicles in an urban road network from a user equilibrium perspective where, in equilibrium, households with similar trips should have similar transport costs. Automation allows a vehicle to travel without passengers to satisfy multiple household trips and, if needed, to park itself in any of the network nodes to benefit from lower parking charges. Nonetheless, the empty trips can also represent added congestion in the network. The model was applied to a case study based on the city of Delft, the Netherlands. Several experiments were done, comparing scenarios where parking policies and value of travel time (VTT) are changed. The model shows good equilibrium convergence with a small difference between the general costs of traveling for similar families. We were able to conclude that vehicle automation reduces generalized transport costs, satisfies more trips by car and is associated with increased traffic congestion because empty vehicles have to be relocated. It is possible for a city to charge for all street parking and create free central parking lots that will keep total transport costs the same, or reduce them. However, this will add to congestion as traffic competes to access those central nodes. In a scenario where a lower VTT is experienced by the travelers, because of the added comfort of vehicle automation, the car mode share increases. Nevertheless this may help to reduce traffic congestion because some vehicles will reroute to satisfy trips which previously were not cost efficient to be done by car. Placing the free parking in the outskirts is less attractive due to the extra kilometers but with a lower VTT the same private vehicle demand would be attended with the advantage of freeing space in the city center.  相似文献   

17.
Travel time ratio: the key factor of spatial reach   总被引:3,自引:0,他引:3  
Dijst  Martin  Vidakovic  Velibor 《Transportation》2000,27(2):179-199
An important aspect of reach and accessibility is the time people are willing to spend on reaching activity places. In this paper we see the issue of travel time in an alternative way. Instead of looking at travel time separated from time spent on activities, we examine the relation between travel time and stay time. We operationalize this relation with the concept “travel time ratio”. A hypothetical framework underlying these travel time ratios is displayed. We show that for similar types of activity places the value of travel time ratio are in accordance with each other. We find large differences between trips for mandatory activities and trips for discretionary activities. The results indicate the stability of the travel time ratios. Finally, some implications for future research and policy will be mentioned. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
On the basis of the Norwegian national personal travel survey (NPTS) 1997/98 and a connected mail back survey of the use of information – and communication technology at home, the relation between mobility and use of stationary communication has been studied. On the basis of these results we cannot see any direct substitutionary effects of the use of stationary technology at people's home on the use of mobile technology. Access to and use of information technology seems not to have a significant impact on travel activities in everyday life. Stationary communication seems to be a supplement to activities based on mobile technology. For people who work more than “normal” weekly working hours, stationary technology seems to give them greater flexibility in regard to where to work, but it does not necessarily reduce their travel activity. There is a tendency that people who own home computers make less work trips, but this does not affect the total number of daily trips. The spatial flexibility give a temporal flexibility, which means that work trips and other trips can be more dispersed over the day than is the situation today. The positive consequence can be a reduction in the rush-hour traffic; the negative is that it is more difficult to offer a high frequent public transport service when travel needs are more spread in time. Ownership and use of both mobile and stationary technologies are unequally distributed. Men, people with high education and income are the most frequent owners and users.  相似文献   

19.
The reasons underlying the decline of stage bus services in the U.K. over the past 30 years seem to be well understood, and the probable future trends have been projected using a quantitative forecasting model. The model considers U.K. bus services at a very aggregate level, but it breaks the demand into specific user groups: work trips, children's travel, travel by the elderly, and all other travel, and separately for households with and without a private car. Forecasts depend very sensitively on the level of economic growth assumed, since this governs the two major factors which determine public transport use — car ownership and the cost of operating the services. If the economy could recover its historic growth rates, a further substantial decline in bus use seems inevitable under most realistic assumptions. However, with the present economic outlook, a lower growth rate seems likely to persist for some time, and in this case public transport use will become much more stable in the 1990's; a tendency which would be helped if there were large increases in fuel prices. Many of the Metropolitan Counties have adopted policies of strongly restraining future rises in fares, in some cases to the extent of freezing fares in monetary terms. The effects of such policies on both patronage and subsidies are considered here, and although much of the current political attention is focussed on controlling fares, the question of balance between fares and service levels is also discussed. Lastly, it must be admitted that these predictions are based on knowledge which is largely restricted to the short-term effects of transport policies. The nature of our uncertainty about longer-term effects, and the possible size of them, is considered in terms of sensitivity-testing of the prediction model.  相似文献   

20.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号