首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies on dual-fuel combustion in compression-ignition (CI) engines, also known as diesel engines, fall into two categories. In the first category are studies focused on the addition of small amounts of gaseous fuel to CI engines. In these studies, gaseous fuel is regarded as a secondary fuel and diesel fuel is regarded as the main fuel for combustion. The objectives of these studies typically involve reducing particulate matter (PM) emissions by using gaseous fuel as a partial substitution for diesel fuel. However, the addition of gaseous fuel raises the combustion temperature, which increases emissions of nitrogen oxides (NOx). In the second category are studies focused on reactivity-controlled compression-ignition (RCCI) combustion. RCCI combustion can be implemented by early diesel injection with a large amount of low-reactivity fuel such as gasoline or gaseous fuel. Although RCCI combustion promises lower NOx and PM emissions and higher thermal efficiency than conventional diesel combustion, it requires a higher intake pressure (usually more than 1.7 bars) to maintain a lean fuel mixture. Therefore, in this study, practical applications of dual-fuel combustion with a low air-fuel ratio (AFR), which implies a low intake pressure, were systemically evaluated using propane in a diesel engine. The characteristics of dualfuel combustion for high and low AFRs were first evaluated. The proportion of propane used for four different operating conditions was then increased to decrease emissions and to identify the optimal condition for dual-fuel combustion. Although the four operating conditions differ, the AFR was maintained at 20 (? approximately equal to 0.72) and the 50% mass fraction burned (MFB 50) was also fixed. The results show that dual-fuel combustion can reduce NOx and PM emissions in comparison to conventional diesel combustion.  相似文献   

2.
为了改善发动机燃用高比例生物质混合燃料的性能,在中等比例的生物柴油-柴油混合燃料中分别添加5%、10%和20%体积比的乙醇(分别用BD50E5,BD50E10和BD50E20表示),在一台6缸增压共轨柴油机上,将发动机的转速稳定在1 600 r·min-1,选择7个不同的负荷点测定不同掺混比生物柴油-柴油-乙醇混合燃料的燃烧与排放性能,并将其与柴油进行对比。结果表明:在平均有效压力为0.322 MPa的低负荷条件下,发动机为预喷加主喷喷油策略,在预喷的低温反应阶段生物柴油-柴油-乙醇混合燃料产生了大量羟基自由基,因此混合燃料的缸内最大压力和最大瞬时放热率均高于柴油;随着负荷的增大,当平均有效压力为0.805 MPa时,发动机的喷油策略转变为单段喷射,乙醇的热值较低导致生物柴油-柴油-乙醇混合燃料的缸内最大压力和最大瞬时放热率低于柴油;随着乙醇掺混比的增大,受乙醇低十六烷值和高汽化潜热的影响,生物柴油-柴油-乙醇混合燃料的滞燃期明显延长;强烈的预混燃烧和乙醇的高含氧量使混合燃料的燃烧速度明显加快,乙醇的添加有利于燃料集中放热从而缩短燃烧持续期;与纯柴油相比,BD50E5,BD50E10和BD50E20的NOx排放量分别升高了10.46%、12.59%和17.52%,碳烟排放量分别降低了37.91%、45.85%和49.25%,CO排放量分别降低了20.24%、36.43%和46.43%,HC排放量分别降低了12.53%、4.40%和0.76%。  相似文献   

3.
采用助溶剂解决柴油和甲醇相溶性问题并配制出柴油醇燃料,在增压中冷压燃式发动机的结构和参数不作任何调整的条件下,进行了不同甲醇含量柴油醇的燃烧、性能和排放特性的试验研究。研究表明,在供油量一定的情况下燃用柴油醇,发动机的燃烧特性发生变化,导致性能和排放变化,且随燃料中甲醇含量的增加,变化趋势加剧,特别是在小负荷情况下。  相似文献   

4.
在1台共轨直喷(CRDI)柴油机上开展了不同喷射策略下桐油、乙醇与柴油混合燃料的燃烧和排放特性研究。试验结果表明:与0号柴油相比,混合燃料的着火延迟期稍长,缸内压力峰值和放热率较高,但燃烧持续期稍短;随着桐油和乙醇体积分数的增加,有效热效率(BTE)也随之增大。在低负荷时,混合燃料的CO和HC排放较高,且随着桐油和乙醇所占体积分数的增大而增加;混合燃料的NOx排放在低负荷时较低,在高负荷时略高;在高负荷时,混合燃料的炭烟排放大大减少。总体而言,混合燃料中乙醇对发动机性能的影响比桐油大。  相似文献   

5.
This paper deals with the main physical-chemical properties of ethanol-diesel blend and the effects of ethanoldiesel blends (up to 15% volume) on engine performance (full load torque vs. engine speed, BSEC vs. torque at 1400 r/min and 2300 r/min, and effect of start of injection angle) and emissions in ECE R49 tests (steady 13 points) using a 6.6 L inline 6-cylinder turbocharged direct injection diesel engine. The results show that an increase in ethanol fraction results in decreased viscosity of the blend fuel and very high distillation characteristics in the low temperature range. Solvents can improve the solubility of ethanol-diesel blends. The engine power was degraded proportional to the ethanol content (10% and 15%) due to the LHV (low heating value) of the blends. The higher latent heat of vaporization and lower CN (cetane number) of ethanol, which results from the steady state emissions of CO, HC, and SOF (soluble organic fraction), were much higher in the ECE R49 tests at low loads. Soot (solid mass) emissions were improved. The particulate matter emissions were significantly increased with higher blend volumes, and NOx emissions slightly increased with higher ethanol volumes. By increasing the injection angle properly, the performance parameters of the diesel engine were improved, but NOx emissions were deteriorated slightly.  相似文献   

6.
Recently, biodiesel has emerged as an alternative fuel for achieving low-temperature combustion (LTC). Several articles in the literature have showed that oxygenated biofuels, including biodiesel, can improve combustion stability under high exhaust gas recirculation (EGR) operation, which is considered to be necessary for the removal of nitric oxides (NOx). The objective of this study was to investigate the performance and emissions of 20% biodiesel blended diesel fuel (B20) at various intake pressures and oxygen concentration levels to characterize the fuel for LTC application. The experimental investigation of B20 was carried out using a single-cylinder engine (SCE) at 1400 rpm and 50% load condition. A set of critical flow orifices with synthetic EGR was employed to simulate various intake pressures and EGR levels. The behavior of the B20 was first characterized under various intake conditions. The results showed that with high oxygen intake, B20 exhibited combustion and emission levels that were very similar to conventional diesel. However, B20 reduced combustion deterioration while exhibiting lower carbon monoxide (CO) and hydrocarbon (HC) emissions than diesel under low oxygen intake conditions.  相似文献   

7.
分析了自行研制的新型复合含氧添加剂(记为FHYJ)的理化特性,在车用BJ493Q柴油机上进行了燃用FHYJ掺烧比例为9%的FHYJ—柴油混合燃料的试验,测量了缸内压力、压力升高率和放热率。比较和分析了燃用柴油和FHYJ—柴油混合燃料的燃烧特性,探讨了添加剂和混合燃料对柴油机滞燃期、预混合燃烧期、扩散燃烧期以及燃烧持续期等参数的影响。结果表明,在柴油机不作任何改动的前提下,掺烧FHYJ清洁燃料复合含氧添加剂,缸内压力、压力升高率和放热率在低负荷下均与原机基本相当,在中、高负荷有所下降,滞燃期、预混燃烧期均较原机延长,扩散燃烧期和燃烧持续期均较原机缩短,且其变化程度均随负荷的增大而增大。  相似文献   

8.
为满足非道路用柴油机的排放法规,从改善柴油机缸内混合气形成质量出发,提出了直喷式柴油机涡流室燃烧系统;设计了柴油机外部增压系统,进行了新型燃烧系统在外部增压下性能的实验研究。结果表明,外部增压能降低柴油机的油耗和排放;增压压力为0.15MPa时,柴油机油耗率最低。增压压力为0.18MPa时,使用4×0.36×140°喷油嘴在供油提前角为8°CA、90%负荷下,NOx排放量仅为常压下的25%。  相似文献   

9.
GZ机油添加剂对发动机环保性能影响的试验研究   总被引:2,自引:0,他引:2  
通过对各种汽油机、柴油机进行的有无GZ添加剂时的对比试验,证明了GZ机油添加剂能降低发动机的机械噪声,减少柴油机排气烟度和汽油机的怠速有害排放,改善发动机的环保性能。  相似文献   

10.
The demand for reduced pollutant emissions has motivated various technological advances in passenger car diesel engines. This paper presents a study comparing two fuel injection systems and analyzing their combustion noise and pollutant emissions. The abilities of different injection strategies to meet strict regulations were evaluated. The difficult task of maintaining a constant specific fuel consumption while trying to reduce pollutant emissions was the aim of this study. The engine being tested was a 0.287-liter single-cylinder engine equipped with a common-rail injection system. A solenoid and a piezoelectric injector were tested in the engine. The engine was operated under low load conditions using two injection events, high EGR rates, no swirl, three injection pressures and eight different dwell times. Four injector nozzles with approximately the same fuel injection rate were tested using the solenoid injection system (10 and 12 orifice configuration) and piezoelectric system (6 and 12 orifice design). The injection system had a significant influence on pollutant emissions and combustion noise. The piezoelectric injector presented the best characteristics for future studies since it allows for shorter injection durations and greater precision, which means smaller fuel mass deliveries with faster responses.  相似文献   

11.
发动机燃用水乳化柴油的研究进展   总被引:1,自引:0,他引:1  
综述了柴油机燃用水乳化柴油的燃烧与喷雾特性、动力性与经济性及排放特性,对比分析了发动机燃用水乳化柴油与普通柴油在性能上的差异及其原因,总结了水乳化柴油在柴油机上的应用优化方法。结果表明:与柴油相比,乳化柴油着火滞燃期延迟,燃烧持续期缩短,喷雾贯穿距变长或相差不大,火焰升起高度增加;燃用乳化柴油时动力性下降,但有效热效率较柴油升高;乳化柴油可以明显降低NOx和炭烟排放,但多数工况下HC和CO排放有所升高,低转速和中低负荷工况下尤为明显;燃用乳化柴油时颗粒物数量浓度增加,体积浓度减小,且对于醛类和噪声排放并没有改善作用;添加合适添加剂或结合发动机技术协同作用,可以针对性地改善乳化柴油的燃烧过程,进一步起到节能减排的效果。基于燃料稳定性与燃料理化特性综合优化目标的燃料设计,以及适用于乳化柴油的高压共轨柴油机燃烧组织参数优化是未来的研究方向。  相似文献   

12.
以4100柴油发动机为研究对象,用fire软件模拟分析不同EGR对高密度一低温柴油机燃烧和性能的影响。结果表明,应用EGR能有效降低NOx的排放,但同时发动机的烟度排放会有一定幅度的上升:EGR率的增加会给柴油机的动力性、燃油消耗率、烟度的排放带来不同程度的负面影响,使柴油机的最大爆发压力及放热率峰值下降。  相似文献   

13.
基于局部线性模型树的高压共轨柴油机排放模型   总被引:3,自引:0,他引:3  
为研究面向闭环控制的柴油机在线排放模型,以1台高压共轨、涡轮增压中冷柴油机的转速、扭矩、空燃比、燃烧始点、燃烧重心、燃烧终点、最高燃烧温度、最大缸内压力等运转和燃烧的各项参数为基础,运用局部线性模型树对排放物HC,CO,CO2,NOx和烟度进行了仿真研究。研究结果表明,以转速、扭矩、空燃比为输入时,CO,CO2,NOx的仿真结果与试验值具有较好的一致性,以转速、扭矩、空燃比、燃烧重心为输入时,HC、烟度的仿真结果与试验值具有较好的一致性。各排放的期望响应与仿真输出的平均误差在10%以内,线性回归相关系数达到0.96以上。各个排放物的仿真过程单独进行时,可以得到较好的仿真效果。因此,局部线性模型树模型适用于高压共轨柴油机排放物的仿真。  相似文献   

14.
柴油机掺水燃烧的试验研究   总被引:3,自引:0,他引:3  
不改变柴油机结构,在1135柴油机上进行了在线燃油乳化、进气道喷水和乳化油的应用性研究。通过台架试验,得出不同负荷下燃烧特性、燃油消耗率、NOx及碳烟排放随掺水比例增加的变化规律。在综合效果较好的比例下,与乳化油、进气道喷水两种掺水燃烧方式进行相同mw/mf的对比试验。试验证明,在线乳化燃油和乳化油燃烧特性基本一致;掺水比例随负荷变化,能够实现小负荷时工作稳定,大负荷时大幅度降低NOx和碳烟排放的目标。  相似文献   

15.
In SI engines, valve events have a major influence on volumetric efficiency, fuel economy and exhaust emissions. Moreover, swirl and tumble motions in the intake charge also improve combustion speed and quality by stratifying the mixture as well as intensifying the mixing rate of air and fuel. This paper investigates the behaviors of an engine and the combustion phenomenon for various intake valve timings and intake charge motions using CVVT system and port masking schemes. Test condition includes a part load and a cold idle condition inclusive of a cold start of the engine. Time-resolved HC and NOx emissions were also measured at an exhaust port to examine their formation mechanisms and behaviors with fast response HC/NOx analyzers. In conclusion, the fast burning of fuel and improved combustion quality by enhanced charge motions reduced unburned HC emissions, and advancing the intake valve opening reduced HC as well as NOx. Furthermore, HCs during the cold transient phase and idle conditions decreased with recalibrated start parameters such as lean air-fuel ratio and spark retardation via the enhancement of intake charge motions.  相似文献   

16.
Compression ratio (CR) is a design parameter with highest influence on efficiency, emission and engine characteristics. In conventional internal combustion (IC) engines, the compression ratio is fixed and their performance is, therefore, a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speed and loads and in different ambient conditions. If a diesel engine has a fixed CR, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio (VCR) provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. By application of VCR and other mechanisms, the optimal regime fields are extended to the prime requirements: consumption, power, emission, noise, etc., and/or the possibility of the engine to operate with different fuels is extended. An experimental Diesel engine has been developed at the Faculty of Engineering, University of Kragujevac. The changes of CR are realized by changing the piston chamber diameter. Detailed engine tests were performed at the Laboratory for IC engines. Special attention has been given to decrease of fuel consumption and exhaust emissions. An optimal field of CR variation has been determined depending on the given objectives: minimal fuel consumption, minimal nitric oxides, and particulate matter emissions, etc.  相似文献   

17.
Exhaust nanoparticle emissions from internal combustion engines: A review   总被引:4,自引:0,他引:4  
This paper reviews the particle emissions formed during the combustion process in spark ignition and diesel engine. Proposed legislation in Europe and California will impose a particle number requirement for GDI (gasoline direct injection) vehicles and will introduce the Euro 6 and LEV-III emission standards. More careful optimization for reducing particulate emission on engine hardware, fuel system, and control strategy to reduce particulate emissions will be required during cold start and warm-up phases. Because The diesel combustion inherently produces significant amounts of PM as a result of incomplete combustion around individual fuel droplets in the combustion zone, much attention has been paid to reducing particle emissions through electronic engine control, high pressure injection systems, combustion chamber design, and exhaust after-treatment technologies. In this paper, recent research and development trends to reduce the particle emissions from internal combustion engines are summarized, with a focus on PMP activity in EU, CARB and SAE papers and including both state-of-the-art light-duty vehicles and heavy-duty engines.  相似文献   

18.
汽车发动机在节能和排放领域的新进展   总被引:4,自引:0,他引:4  
回顾 内燃机的发展历程,并对为降低内燃机排放而采取各种动力的汽车进行分析,指出燃油汽车仍具有很大的发展前景,论述了汽油机从化油器式直至均燃直喷式的发展历程,并阐述了它们各自的优缺点;指出了柴油机为达到提高功率密度、降低燃油消耗及改善环境的目的应采取的措施。  相似文献   

19.
燃料富氧重整和双燃料燃烧模式是改善燃烧过程和降低颗粒物排放的重要方法.在一台四缸增压中冷的高压共轨柴油机上,采用进气道喷射甲醇、缸内喷射P50(50%体积比例柴油与50%体积比例PODE)的双燃料模式,研究掺混比对P50/甲醇双燃料发动机燃烧与排放特性的影响.研究结果表明:相比于纯柴油模式,P50及P50/甲醇双燃料燃...  相似文献   

20.
通过配制不同正丁醇掺混比例的正丁醇-柴油混合油,在不改变供油提前角和燃油系统的条件下,测量了柴油机燃用正丁醇-柴油混合油的气缸压力、放热率以及NOx、炭烟等排放污染物,探讨了正丁醇掺混比例对柴油机燃烧过程的影响规律,分析了正丁醇对排放污染物的作用过程。结果表明:正丁醇掺混比例为0%,5%,10%时,低转速、低负荷工况下,缸内最大燃烧压力分别为6.2MPa,5.9MPa和5.8MPa,与燃烧柴油相比略有降低;高转速、高负荷工况时,缸内最大燃烧压力分别为7.5 MPa,7.6 MPa,7.7 MPa,与燃烧柴油相比稍有增加;随着正丁醇掺混比例增加,柴油机的CO和HC排放升高,在中低负荷下NOx排放有所降低,高负荷时升高明显,平均增加了6.4%,炭烟排放降低明显,燃用正丁醇添加比例为5%和10%时,在高负荷下炭烟分别下降了25%和36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号