首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
某钢箱梁正交异性桥面板行车道范围内采用球扁钢纵肋,在横隔板对应部位设置空孔让纵肋连续通过,为研究横隔板的空孔圆弧、空孔与纵肋连接端部等两个细节部位的受力特性,以某立交桥F匝道为工程背景,建立全桥有限元模型,对称荷载作用,对比横隔板对称位置空孔应力分布,分析纵肋球头朝向和背对邻近腹板两种布置对空孔受力的影响.荷栽位于不同...  相似文献   

2.
正交异性钢桥面板足尺疲劳试验   总被引:3,自引:0,他引:3  
以某大跨径斜拉桥采用的正交异性钢桥面板为工程背景,进行钢桥面板疲劳性能试验研究,足尺疲劳试验循环次数累积达到1 020万次.试验结果表明:加劲肋与盖板连接部位出现了纵向疲劳裂纹;加劲肋与横隔板连接的焊缝端部出现了在焊趾处萌生并沿加劲肋腹板扩展的疲劳裂纹;受焊接残余应力影响,处于疲劳荷载压应力区的腹板与横隔板连接焊缝端部也萌生了疲劳裂纹;横隔板挖孔部位无疲劳裂纹;若以测点应力发生变化为疲劳失效判据,则加劲肋与横隔板连接端部的疲劳细节高于AASHTO中D类和Eurocode的63类细节等级,加劲肋与盖板连接的疲劳细节高于AASHTO中D类和Eurocode的71类细节等级;若以出现疲劳裂纹为疲劳失效判据,则其疲劳细节高于AASHTO规范中D类和Eurocode的80类细节等级.  相似文献   

3.
纵肋与横隔板连接是控制钢桥面板耐久性的关键构造细节,其在轮载作用下应力传递复杂,构造设计不当极易引起疲劳裂纹。目前常规式纵肋与横隔板连接在运营过程中可能发生的疲劳裂纹形式有横隔板弧形开孔裂纹、焊缝端部横隔板裂纹、焊缝端部纵肋水平裂纹或竖向裂纹,针对常规式连接的不足,设计上进一步提出内肋式和无缝式2种构造类型。采用有限元方法,以纵肋与横隔板连接可能出现裂纹的4类细节为对象,基于应力影响面分析,讨论了车辆轮载移动对各细节局部受力的影响,研究了常规式、内肋式和无缝式3种构造类型的疲劳损伤特征。结果表明:轮载作用下4类细节的局部效应非常显著,纵向影响区域约在3道横隔板之间,横向影响区域约在2个纵肋范围;考虑轮迹横向概率分布,各细节应力幅横向折减系数在0.94~0.97范围内。常规式连接弧形开孔细节应力幅最大,主要受面内变形控制,纵肋壁板水平细节次之,表现出明显的面外弯曲特性。与常规式连接相比,内肋式连接纵肋壁板水平细节和竖向细节最大应力幅分别降低28%和29%,减缓了纵肋在焊缝端部的应力集中程度。无缝式连接可能的疲劳破坏形式减少为横隔板焊趾开裂和纵肋壁板焊趾开裂2类,分析发现这2类细节均主要处于受压状态。常规式连接疲劳寿命预估为41.2年,纵肋壁板出现水平裂纹导致疲劳破坏的可能性较大;内肋式连接疲劳寿命由横隔板弧形开孔细节控制,较常规式连接提高58%;无缝式连接疲劳寿命预估为85.3年,较常规式和内肋式连接分别提高107%和31%,且两细节寿命相近,从全寿命设计角度考虑该构造更为合理。  相似文献   

4.
为了研究横隔板变形对曲线钢箱梁桥焊缝细节疲劳应力的影响,以某三跨连续钢箱梁高架桥为背景,建立正常横隔板和变形横隔板的钢箱梁模型,针对横隔板分别与U肋、腹板加劲肋、底板开口肋连接焊缝3处细节,研究横隔板变形对各细节应力影响面和最不利工况下应力状态的影响,对比面内、外应力对各细节疲劳损伤的贡献。结果表明:横隔板变形对横隔板-腹板加劲肋细节和横隔板-底板开口肋细节应力影响范围和最不利位置影响显著,并且会导致各疲劳细节的拉应力和压应力有较大增幅,相对于正常横隔板而言更容易产生疲劳损伤;横隔板变形会导致各细节面外应力占比增大,促使面外应力成为各连接焊缝疲劳损伤的主要因素。  相似文献   

5.
为研究钢桥面板疲劳裂纹耦合扩展机理,建立焊接分析有限元模型,对纵肋-顶板连接细节、纵肋-横隔板连接细节的焊接全过程进行数值模拟,基于扩展有限元方法建立钢桥面板数值断裂力学模型,对疲劳敏感细节裂纹静、动态扩展行为进行分析。焊接过程分析结果表明:纵肋-顶板连接焊缝区域、纵肋-横隔板焊缝端部区域均存在较大的残余拉应力,峰值接近钢材屈服强度;横隔板挖孔边缘存在切向残余拉应力,峰值约为200 MPa。疲劳裂纹扩展行为分析结果表明:纵肋-顶板连接细节在车辆荷载单独作用下以受压为主,考虑残余应力场作用后细节处于拉-拉应力状态,疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹;车辆偏载作用下纵肋产生扭转变形,计入残余应力后纵肋-横隔板连接焊缝焊趾受拉开裂,萌生于纵肋焊趾、向纵肋腹板扩展的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹,萌生于纵肋-横隔板连接焊缝横隔板侧焊趾和横隔板挖孔边缘的疲劳裂纹为Ⅰ-Ⅱ型复合裂纹;纵肋对接细节的疲劳裂纹为Ⅰ型裂纹,车辆荷载作用下以受拉为主,位于纵肋底板弧形过渡区的裂纹相较于纵肋底板中间区域具备更强的扩展能力。  相似文献   

6.
周维  于浩楠 《城市道桥与防洪》2021,(11):189-191,202
为系统探究纵肋与横隔板交叉细节的疲劳特性,以某斜拉桥钢桥面板为研究背景,利用ANSYS有限元软件,对2跨3纵肋节段疲劳模型进行了数值模拟.研究结果表明:当疲劳车轮载单侧前后轮中心线通过横隔板正上方时,纵肋与横隔板交叉细节的疲劳应力幅达到最大;在欧规疲劳车荷载下,围焊焊趾处疲劳应力幅为83.6 MPa,横隔板开孔圆弧线上的最大疲劳应力幅为120.2 MPa.  相似文献   

7.
为研究正交异性钢桥面板典型疲劳细节在单轮荷载作用下的应力及疲劳损伤度,以福州长门特大桥为背景,采用ABAQUS有限元软件建立钢桥面板节段模型和3处易开裂部位(横隔板-U肋焊缝、横隔板处和横隔板间的顶板-U肋焊缝)的子分析模型,分析车轮荷载作用位置变化时疲劳细节的应力时程;并采用雨流计数法分析各细节处的应力幅,对疲劳细节进行疲劳损伤度分析。结果表明:单轮荷载顺桥向位于相邻横隔板间时,对横隔板处的顶板-U肋焊缝应力产生较大影响;荷载横向分布接近±750mm时,疲劳细节的应力时程曲线较为平缓,荷载对其应力的影响较小;疲劳损伤最大的是横隔板处的顶板-U肋焊缝焊根部位,该部位易产生疲劳破坏。建议在该部位增设钢角撑或钢板等,以降低该位置的应力幅和疲劳损伤度,提高结构的耐久性。  相似文献   

8.
为了解车轮荷载作用对正交异性钢桥面板典型疲劳细节的影响,以长门特大桥为背景,采用有限元法建立正交异性钢桥面板节段模型及易开裂部位的子模型,分析在不同横向荷载分布下3处典型疲劳细节受力及面内外变形,得到各细节最不利加载位置。对最不利位置进行加载,分析疲劳裂纹尖端应力强度因子变化规律,研究不同疲劳细节裂纹类型及扩展能力。结果表明:单轮荷载作用下,横隔板弧形缺口位置会发生面内外变形,顶板-U肋焊根处以面外变形为主,横隔板间的顶板-U肋焊缝焊根位置面外变形最大。在裂纹较短时,随着长度的增加,弧形缺口裂纹从张开型裂纹逐渐转向张开型、滑开型混合裂纹,且横隔板处的顶板-U肋焊根裂纹为复合型裂纹,横隔板间的顶板-U肋焊根裂纹为张开型裂纹。横隔板弧形缺口裂纹和顶板-U肋焊缝焊根裂纹的尖端应力强度因子的最大值,分别出现在裂纹长度为20 mm和40 mm附近,该处裂纹较容易继续扩展。  相似文献   

9.
横隔板开孔和U肋与横隔板连接焊缝端头部位是正交异性钢桥面板的疲劳敏感部位,容易过早、过多地出现疲劳裂纹。为了研究疲劳裂纹产生的原因,以某钢箱梁悬索桥为背景,针对其正交异性钢桥面板制作节段模型进行疲劳试验和扩展有限元分析,考虑横隔板面外变形的影响,研究横隔板开孔部位、U肋与横隔板连接焊缝端头部位疲劳裂纹的产生和扩展。结果表明:节段模型经200万次疲劳荷载作用后,横隔板开孔处出现长7.5mm的裂纹,260万次后扩展到31mm;考虑顶板和横隔板之间的相对水平位移(1.21mm)时,各测点的面内应力计算值与实测值整体吻合良好;横隔板开孔断面最小处的应力达60 MPa,热点应力达到或超过该细节的常幅疲劳极限70MPa,在此处产生裂纹;横隔板的面外变形是诱发横隔板开孔处裂纹的根本原因,热点应力和结构缺陷促使了裂纹的产生。  相似文献   

10.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

11.
横隔板弧形切口疲劳裂纹为正交异性钢桥面板的主要疲劳病害之一,为研究该细节的疲劳抗力与裂纹处治技术开展了正交异性钢桥面足尺模型疲劳试验,对横隔板光滑弧形切口、含人工缺陷弧形切口、以及CFRP单面加固含人工缺陷弧形切口的疲劳性能进行了比较研究;结合有限元方法对横隔板光滑弧形切口疲劳评估方法进行了探讨。结果表明:打磨光滑的横隔板弧形切口在标准疲劳车作用下的疲劳寿命超过5 000万次,基本不存在疲劳问题。车轮荷载横隔板弧形切口处存在显著的压应力集中,热残余应力和轮载应力幅的组合效应构成了弧形切口疲劳开裂的外部驱动力。此外,初始几何缺陷是该细节疲劳开裂的重要影响因素。光滑弧形切口的疲劳评估,可采用距切口自由边6 mm处横隔板表面的主应力作为该细节名义应力,其疲劳抗力高于AASHTO规范的疲劳等级A(CAFL为165 MPa)。外贴CFRP补强可有效阻止含缺陷弧形切口处疲劳裂纹的发展。若以裂纹长度6.5 mm作为损伤容限,单面粘贴CFRP加固含缺陷横隔板弧形切口的疲劳寿命为未加固切口的14.5倍以上;若采用双面CFRP加固寿命将提高更多,提高幅度有待进一步研究。  相似文献   

12.
为深入研究钢-UHPC (Ultra-high Performance Concrete)轻型桥面组合体系对弧形缺口的应力改善程度,结合一座大跨自锚式悬索桥,针对正交异性钢桥面板(Orthotropic Steel Deck,OSD)结构铺设UHPC层前、后2种情形,选择3种不同弧形缺口形式,分别建立空间实体有限元分析模型,并采用简化加载、响应面加载2种方式进行分析,由此获得了弧形缺口应力、变形分布规律与车辆轴载位置之间的关系,揭示了弧形缺口出现峰值拉、压应力的原因。以此为基础,采用三轴加载车分别在铺设UHPC层前、后进行现场跑车试验,采集了弧形缺口多个关注点在不同横向加载位置的应力响应曲线,获得了各点的应力极值,并与有限元结果进行了对比分析。研究结果表明:铺设UHPC前、后弧形缺口关注点应力特征随荷载分布规律基本相同,面内应力为主、面外应力较小,拉应力主要由荷载偏载产生、加载区域长,而压应力主要由荷载直接作用于弧形缺口顶部产生,且加载区域短;采用传统简化加载方式难以获得弧形缺口处准确的拉应力峰值,并可能导致应力幅偏小,并由此提出了合理的加载方式;本桥五段线弧形缺口形式受力相对较好;铺设UHPC层能有效减少弧形缺口应力峰值,并在一定程度上缓解疲劳问题,是OSD结构提高疲劳性能的一种有效方案。  相似文献   

13.
现场监测能真实反映结构的构造细节、边界约束和桥面加载条件,是正交异性钢桥面板疲劳评价最合理有效的方法之一。基于某正交异性桥面板钢箱梁桥,通过监测随机车流下同一车道紧邻的2个横隔板上疲劳敏感构造细节的应力响应时程,对比2种不同弧形切口正交异性钢桥面板构造细节的应力响应;通过雨流计数法获取构造细节应力谱,再基于米勒线性累积损伤准则计算疲劳等效应力幅和等效加载次数;最后基于AASHTO LRFD规范条文计算相关构造细节的疲劳寿命。研究结果表明:横隔板弧形切口构造细节总应力是面内应力分量主导,小弧形切口峰值应力时面外应力对总应力的比不大于23%,而大弧形切口仅略减小到20%,但大弧形切口削弱了横隔板腹板,使得传递面内竖向应力的面积减小,反而增大了弧形切口构造细节的应力,因而大弧形切口构造细节的疲劳寿命仅为10.6年,低于小弧形切口的14.2年;对纵肋-横隔板(Rib-to-floorbeam,RF)焊缝构造细节而言,大弧形切口减轻了RF之间的相互约束,能一定程度减小RF纵肋侧和RF横隔板侧的应力响应;但增大了RF围焊处因弯曲产生的压应力,从而导致横向泊松效应在该构造细节处产生大的二次应力;采用小弧形切口时估计的纵肋-横隔板焊缝构造细节的疲劳寿命大于100年,而采用大弧形切口对应寿命仅为31年。研究结果可为正交异性钢桥面板抗疲劳设计和加固提供有益的参考。  相似文献   

14.
为研究超大跨径斜拉桥钢桥面板的疲劳损伤问题,本文以某斜拉桥为工程背景,对实桥进行了现场疲劳损伤监测与分析,并基于断裂力学的三维裂纹扩展模型,对钢箱梁顶板-U肋和横隔板-U肋等焊接细节进行了数值仿真与研究。结果表明:实桥顶板-U肋焊缝细节高应力幅(大于10MPa)循环次数与疲劳损伤度明显低于横隔板-U肋细节,横隔板-U肋焊缝最大应力幅达到75~90MPa,顶板-U肋焊缝最大应力幅为15~30MPa,横隔板-U肋焊缝细节处裂纹数量远大于顶板-U肋焊缝细节处裂纹数量;顶板-U肋焊缝裂纹在扩展过程中基本保持平面,裂纹扩展有先沿焊缝方向纵向扩展,再向深度方向扩展的趋势;横隔板-U肋焊缝焊趾处裂纹先沿初始裂纹深度方向在横隔板扩展,再向横隔板厚度方向扩展,焊趾处裂纹先向U肋厚度方向扩展,后沿初始裂纹长度方向顺桥向扩展;在初始裂纹尺寸与荷载条件相同的情况下,顶板-U肋焊缝焊趾处裂纹扩展速度大于焊根处裂纹扩展速度,横隔板-U肋焊缝焊趾处裂纹扩展速率大于横隔板焊趾处裂纹扩展速率。  相似文献   

15.
为了研究开口加劲肋正交异性钢桥面铺装的力学行为特性,通过建立钢箱梁和铺装整体三维有限元模型,分析了荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。得到如下结论:拉应力是导致铺装出现开裂破坏的主要原因,疲劳裂缝应沿桥梁的纵向;当以拉应力作为控制指标时,钢桥面铺装在距离横隔板0.4 m范围内受力最为不利;开口加劲肋正交异性钢桥面铺装应变水平远大于一般沥青路面;铺装对车辆荷载的应力应变响应具有很强的局部效应;铺装与钢板层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料。  相似文献   

16.
为研究超大跨度隧道分部开挖法施工中隔壁结构的施工力学行为,以山东滨莱高速公路改扩建工程双向八车道乐疃隧道为依托,基于初期支护钢架与中隔壁钢架之间的内力传递、变形协调及拱脚变位,将支护体系等效为支座可移动的三次超静定无铰拱-梁固接结构,建立了上台阶先导初期支护钢架-中隔壁钢架共同承载变位力学计算模型,采用理论分析、现场测试和力学模型计算相结合的方法,对超大跨度隧道上台阶CD法施工时中隔壁的力学行为进行分析。研究结果表明:拱顶沉降和周边收敛主要经历急剧增长、缓慢变形和趋于稳定3个阶段,且各变形值均小于设计预留变形量150 mm;受施工工序和结构约束条件变化的影响,钢架内外侧应力整体呈现出先急剧变化后逐渐趋于稳定的规律,各测点应力小于型钢屈服强度235 MPa;力学模型计算结果和现场实测数据的平均相对误差为12.6%,且规律基本一致;钢架轴力在上台阶施工过程中始终为受压,且最大值均在钢架拱脚处,受后导开挖影响,中隔壁钢架轴力增大,初期支护钢架轴力减小;先导开挖时钢架弯矩大部分部位为正,拱顶部位为负,受后导开挖影响,中隔壁钢架正弯矩值及正弯矩区域减小,同时初期支护钢架正弯矩区域减小,钢架拱脚附近弯矩出现负值;钢架结构整体处于偏心受压状态,受后导开挖影响,中隔壁钢架和初期支护钢架小偏心受压区域均发生移动,且两者钢架小偏心受压长度占比增大。  相似文献   

17.
某异型系杆拱桥空间力学特性分析   总被引:1,自引:0,他引:1  
肖雄杰 《桥梁建设》2012,42(1):60-66
为研究斜吊杆异型系杆拱桥的空间力学特性,以某异型系杆拱桥为研究对象,采用MIDAS Civil建立该桥空间有限元模型,分析其在施工和使用阶段的静、动力特性及结构稳定性.分析结果表明:该桥斜吊杆附加应力对拱肋影响较大,全桥纵、横梁框架体系整体刚度较大,拱肋挠度对整体降温比较敏感,使用阶段各吊杆应力幅比较均匀,为50 MPa左右;拱肋侧倾刚度较小,拱肋刚度对全桥刚度贡献较大,各阶段稳定系数均较高;吊杆调索对全桥应力水平有较大影响,施工中应予注意.  相似文献   

18.
王雪亮 《隧道建设》2008,28(6):680-684
以Mindlin应力方程为基础,对地下连续墙侧面进行单元划分,推导出地下连续墙侧摩擦力在土体中引起的附加应力公式;对于长宽比较大的地下连续墙,墙端荷载按平面应变问题分析考虑,推导出地下连续墙墙端荷载在土体中引起的的附加应力公式,根据所求得的附加应力,采用分层总和法求解地下连续墙的沉降。  相似文献   

19.
闫子才  施一春  胡成 《桥梁建设》2012,42(4):118-123
为了解尼尔森体系提篮拱桥在施工中的内力和线形状态是否满足设计要求,以合福高铁跨越合肥市包河大道的128m提篮拱桥为例,采用有限元软件MIDAS Civil进行尼尔森体系提篮拱桥的空间有限元计算分析,在施工控制中主要对系梁、拱肋的应力和线形以及吊杆的内力进行监测。监测结果表明,整个施工过程中系梁变形较小,拱肋的变形较为明显,两者在拆除系梁支架阶段的累计变形量与理论值均吻合较好;系梁与拱肋的应力水平均满足设计要求,处于安全合理的范围;吊杆内力测试结果与理论目标值相差均在±5%以内,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号