首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
The driver of a vehicle has a significant influence on handling and stability of the vehicle. Due to the complex behavior of a human pilot, a driver model is usually neglected when dealing with the problem of vehicle stability. This work focuses on the interaction between the vehicle and the human pilot. A model characterizing human operator behavior in a regulation task is employed to study directional stability. Linear stability is analyzed by the application of the Routh-Hurwitz criterion and stability boundaries separating the stable domain of operation of the driver from the unstable one are constructed.

The linear analysis predicts that the only possible instability in a driver/vehicle system is an oscillatory instability with increasing amplitude. It is shown that the addition of kinematic as well as slip angle nonlinearities in the vehicle model can have a stabilizing effect on these oscillations of the combined driver/vehicle system. They may also be responsible for the opposite, namely a linearly stable motion may become unstable to finite size disturbances. These nonlinear motions are predicted by a bifurcation analysis and are verified by direct numerical simulation.  相似文献   

2.
Measurement of two track road inputs and theoretical application of the results

The calculation of vehicle response to road-surface irregularity inputs requires the spectral densities of the left and right longitudinal track and their statistical dependence

This paper presents some resluts of parallel profile measurements, three typical german roads have been chosen

Random vibration of two vehicle types are digital-simulated. The dynamic tire load shows that independent suspension systems are more advantageous than beam axles, because by wheel tramp this type increases the dynamic tire load.  相似文献   

3.
A model of driver behavior is described which is based on a current theory of neurophysiological processes occurring in the cerebellum. The model learns to control the vehicle through experience, provides discontinuous ramp steer inputs to the vehicle, accepts discontinuous input data, and is applicable to all control situations.

The model is implemented on a simple simulation model of a car and learning is accomplished by the use of an explicit driver model which drives the vehicle along a specified trajectory.  相似文献   

4.
Comparison of All-Wheel Steerings in the System Driver-Vehicle   总被引:1,自引:0,他引:1  
Different load or tires and a drive on an ice-coated road can overcharge a driver to such an extend, that the result may be an accident. Therefore the aim of development is a self-acting compensation of the vehicle to different vehicle transfer behaviour (invariant vehicle behaviour).

The calculation of so called optimal characteristics shows, that only rear-wheel steering cannot realize this aim of development. Therefore an additional front-wheel angle, which is not influenced by the driver, is necessary. A transfer function can be calculated in order to get controlled steering of the rear wheels without the influence of load.

It is not possible to realize optimal characteristics, because the parameters of the vehicle are difficult to measure. Only an optimal diagnosis and control of driving condition realize a relief for the driver in every driving situation in order to avoid most of the accidents.

The often demanded sideslip angle compensation only worsens driving conditions on ice-coated roads. Therefore systems which identify the driving condition themselves have to be favoured in any case.  相似文献   

5.
Vehicle steering dynamics show resonances, which depend on the longitudinal speed, unstable equilibrium points and limited stability regions depending on the constant steering wheel angle, longitudinal speed and car parameters.

The main contribution of this paper is to show that a combined decentralized proportional active front steering control and proportional-integral active rear steering control from the yaw rate tracking error can assign the eigenvalues of the linearised single track steering dynamics, without lateral speed measurements, using a standard single track car model with nonlinear tire characteristics and a non-linear first-order reference model for the yaw rate dynamics driven by the driver steering wheel input. By choosing a suitable nonlinear reference model it is shown that the responses to driver step inputs tend to zero (or reduced) lateral speed for any value of longitudinal speed: in this case the resulting controlled vehicle static gain from driver input to yaw rate differs from the uncontrolled one at higher speed. The closed loop system shows the advantages of both active front and rear steering control: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres, enlarged stability regions, reduced lateral speed and improved manoeuvrability; in addition comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced.

For the designed control law a robustness analysis is presented with respect to system failures, driver step inputs and critical car parameters such as mass, moment of inertia and front and rear cornering stiffness coefficients. Several simulations are carried out on a higher order experimentally validated nonlinear dynamical model to confirm the analysis and to explore the robustness with respect to unmodelled dynamics.  相似文献   

6.
Instead of writing equations which when solved yield the response of a vehicle to an input such as the front wheel steer angle, one can often invert the equations so that a response quantity is specified as an input and a new set of equations is solved yielding the steer angle required as an output. Using these equations one can discover the input steer angle a driver would need to impose in order to accomplish a specific maneuver for various vehicles.

It is shown that there are many possible inverse equation sets and that the eigenvalues of the inverse equations are hard to interpret since they may have little to do with the vehicle parameters. The linear single-input single-output case is studied first to fix ideas using a simple example. For the bicycle model vehicle, it is shown that any vehicle may have unstable inverse equations depending upon the response quantity used. Extensions to nonlinear and multiple-input multiple output systems are discussed.  相似文献   

7.
Advanced Vehicle Control Systems (AVCS), when realized, should substantially increase the convenience and safety of highway travel. Automated lateral control is an important step in the realization of AVCS. Much research has been concerned with lateral control during low-g maneuvers. However, before passengers' lives are in the hands of any automated laterally-controlled vehicle, the vehicle controller must be designed to respond to emergency situations where high-g maneuvers may be necessary.

This paper presents the development of a nonlinear-gain-optimized (NGO) controller for emergency automated lateral control of four wheel steered automobiles. Continuous gain equations (GE) are used to account for changes in the vehicle speed. The NGO controller uses a linear vehicle/tire model to define the state model. The response of a nonlinear vehicle/tire model is used to choose the performance index that optimizes the feedback gains for high-g emergency maneuvers at discrete speeds. Continuous gain equations are then derived as least-square approximations to each set of gains.

The performance of the four-wheel-steer continuous gain equations (4WS-GE) controller is compared to that of a two-wheel-steer continuous gain equations (2WS-GE) controller. Significant improvements in vehicle response are realized by using the 4WS-GE controller. The robustness of the controller's performance is examined with respect to changes in tire parameters and changes in vehicle mass.  相似文献   

8.
基于预瞄跟随理论,本文应用一般随机摄动法,对考虑驾驶员不确定性的人-车闭环系统进行响应分析,结合实例,说明该方法在汽车主动安全性评价中的应用。  相似文献   

9.
In this paper some results of theoretical and experimental investigations on the dynamic directional properties of heavy tractor-semitrailer vehicles are presented.

A nonlinear digital computer model was developed on which the theoretical system analysis is based. This model takes account of the nonUnear tire properties and the friction couple of the fifth wheel. A combination of numerical computation methods (Runge-Kutta and Newton-Raphson techniques) is used for the digital computer simulation.

Full scale road tests with articulated vehicles of 38 ton total weight were conducted for experimental validation of the used theoretical model. As input signals to the vehicle, predetermined steering wheel angle functions were used. The system output signals corresponding to these input functions were measured and stored.

A comparison of the obtained theoretical and experimental results shows a very good qualitative agreement and hence leads to the conclusion that the developed theoretical model can give consistent estimates of the basic dynamic vehicle properties.  相似文献   

10.
This paper reviews the measurements which are necessary to all aspects of vehicle dynamics as applied to rail vehicles. Although an attempt has been made to introduce some reference to measurements made in Europe and America, the detailed discussion has been limited to those techniques employed by British Rail. This has the advantage that the discussion can be first hand and therefore more specific.

For convenience the measurements have been collected together under four broad headings.

1. Measurements of rail system data.

2. Measurements of vehicle parameters.

3. Measurements to validate theory and predictions.

4. Measurements of vehicle performance.  相似文献   

11.
Detailed Investigations of the Steady State Turning of Single Track Vehicles

In the paper the steady state turning of single track vehicles on a horizontal, even road is investigated, supposing the air to be at rest. The vehicle model used has six degrees of freedom: rolling, yawing, pitching and bouncing of the vehicle, rotation of the front wheel system (steering) relatively to the main frame and distortion of the rear wheel system due to limited stiffness of its linkage, and also takes into account wind drag and gyroscopic effects generated by wheels and other vehicle components. A special importance is given to the geometry of the vehicle

The results show a comparison of two types of motorcycles with different geometries and tires. To characterize the vehicle behaviour the roll, side slip and steering angle as functions of the normal acceleration are used. A more detailed study in respect to the steering torque is added.  相似文献   

12.
Optimization for Vehicle Suspension II: Frequency Domain   总被引:4,自引:0,他引:4  
The objective of this study is optimizing the components design of a vehicle suspension system under excitation due to road roughness. The vehicle is modelled as a dynamic system made of masses interconnected by, linear, springs and dampers. The optimizing code provides values corresponding to the caracteristics of masses, dampers and springs which, within a range, minimize the objective function for a defined excitation. This objective function auantifies the vehicle comfort level.

The optimization method used is the sequential linear programming by iteratively applying the Simplex algorithm. The model response is obtained in frequency domain and the vehicle excitation can be either random or deterministic.

The exact nature of the optimization problem, objective function and restrictions, depend on the type of excitation considered.

In succeeding paragraphs, the problem formulation together with a comparison with other authors is presented.  相似文献   

13.
Simulation of Steering and Braking Behaviour of Tractor-Semitrailer Vehicles in Extreme Situations

This paper deals with the simulation of the behaviour of tractor-semitrailer vehicles at braking on wet, slippery road surface. The nonlinear model used for the computation enables to simulate extreme situations at wheel locking and swerving

The instabilities during braking such as jackknifing and trailer swing as well as non steerability are investigated. Straightline braking shows the influence of cornering on the behaviour during braking in a turn.  相似文献   

14.
The actual trajectory covered by a mobile robot in motion differs from the trajectory planned on the basis of the kinematic characteristics of its directional control system. This difference is essentially related to the behaviour of wheel-road contact, the influence of dynamic loads and the presence of caster wheels.

This paper presents a mathematical model (“ DDPP) which simulates the motion of a generic mobile robot vehicle with a propulsion and directional control system based on two independent driving wheels and two caster wheels.

The differential equations of motion have been obtained by applying modified equations of Lagrange.

The role played by the dynamic loads, the wheel-road contact features and the caster wheels is discussed hereof.  相似文献   

15.
Optimization for Vehicle Suspension I: Time Domain   总被引:4,自引:0,他引:4  
A numerical procedure for finding the optimum values of a number of parameters describing a model vehicle suspension has been studied. The vehicle has been modelled by dynamic systems of linear springs and dampers, and the goal is to obtain lower acceleration peaks at an elected design point in the vehicle.

The problem is stated as a mathematical programming problem which can be solved by means of the sequential linear programming technique. The procedure has been implemented for a four wheel independent suspension model capable of being subjected to road irregularities and to centrifugal and braking accelerations.  相似文献   

16.
Work relevant to the state of the art as regards passenger cars towing trailers is referenced and reviewed. Not only included is the very limited amount of work specifically dealing with passenger cars towing trailers, but also reviewed is the much larger body of work having a bearing on car-trailer systems. Topics included are aerodynamic forces, tire forces, the compliance concept, relevant work on vehicles without trailers, vehicles with trailers, and the role of the driver. The types of stability problems exhibited by car-trailer systems are discussed.

The state of the art as regards ability to predict vehicle response to specific steering inputs is shown to be fairly advanced. Recent significant advances include the appearance of experimental data useful for validating theoretical models. However, the state of the art as regards definition of what constitute desirable handling characteristics is still at a primitive stage, largely because of a lack of understanding of the roles played by drivers as part of the vehicle -driver - environment systems.

Throughout the review an effort was made to point out topic areas where it is likely that significant future contributions to the state of the art can be made. These areas are reviewed in the conclusions.  相似文献   

17.
为保证线控底盘电动汽车在遭遇执行器失效时的稳定性,并考虑人-车交互行为,提出了以驾驶人为领导者的一主多从(Single-leader-multiple-follower,SLMF)混合博弈容错控制框架。为实现驾驶人-车辆的交互控制,首先建立了两者的耦合模型。其次,将驾驶人及5个底盘子系统即主动前轮转向(Active Front Steering,AFS)系统和4个轮毂电机建模为博弈中的6个参与者,基于Stackelberg主从博弈与多人合作博弈设计了SLMF混合博弈控制框架。考虑驾驶人具有优先控制权限及执行器对驾驶人行为的补偿作用,基于Stackelberg博弈理论建立了驾驶人与底盘子系统的主从博弈模型,其中驾驶人作为领导者通过感知跟随者的行为做出转向决策,而5个底盘子系统被建模为跟随者。由于跟随者追求共同的横向稳定控制目标,因此基于合作博弈理论建立了合作模型,并对领导者的转向策略做出最优响应。最后,为研究跟随者之间追求不同目标导致不合作时的控制效果,设计了非合作Nash博弈与Stackelberg博弈相结合的混合博弈为对比方法,通过实时硬件在环测试验证并对比了2种方法。结果表明:针对不同风格的驾驶人,所设计的方法可以保证遭遇执行器卡死失效车辆的稳定性。与不合作的情况相比,2种不同风格的驾驶人驾驶的车辆在底盘子系统合作时,车辆稳定性分别提升了54.62%和53.78%,驾驶人工作负荷分别降低了31.79%和36.07%。  相似文献   

18.
Additional 4WS and Driver Interaction   总被引:1,自引:0,他引:1  
This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

19.
Vehicle rollovers may occur under steering-only maneuvers because of roll or yaw instability. In this paper, the modified fishhook and the sine maneuvers are used to investigate a vehicle's rollover resistance capability through simulation. A 9-degrees of freedom (DOF) vehicle model is first developed for the investigation. The vehicle model includes the roll, yaw, pitch, and bounce modes and passive independent suspensions. It is verified with the existing 3-DOF roll-yaw model. A rollover critical factor (RCF) quantifying a vehicle's rollover resistance capability is then constructed based on the static stability factor (SSF) and taking into account the influence of other key dynamic factors.

Simulation results show that the vehicle with certain parameters will rollover during the fishhook maneuver because of roll instability; however, the vehicle with increased suspension stiffness, which does not rollover during the fishhook maneuver, may exceed its rollover resistance limit because of yaw instability during the sine maneuver. Typically, rollover in the sine maneuver happens after several cycles.

It has been found that the proposed RCF well quantifies the rollover resistance capability of a vehicle for the two specified maneuvers. In general, the larger the RCF, the more kinetically stable is a vehicle. A vehicle becomes unstable when its RCF is less than zero. Detailed discussion on the effects of key vehicle system parameters and drive conditions on the RCF in the fishhook and the sine maneuver is presented in Part II of this study.  相似文献   

20.
Vehicle refinement should include a consideration of the discomfort likely to be caused by vibration. This paper reviews the measurement, the evaluation, and the assessment of vehicle vibration felt by drivers and passengers.

The feeling of vibration that gives rise to judgements of vibration discomfort can be predicted using evaluation procedures that take into account human sensitivity to different magnitudes, frequencies, directions, and durations of vibration. The evaluation methods make it possible to optimise vehicles via dynamic modelling before the production of prototypes and they assist the testing and optimisation of prototypes and production vehicles.

Vibration evaluation provides imperfect predictions of discomfort when driver or passenger opinion is influenced by factors other than the vibration that is being measured and evaluated. Vibration evaluation can detect changes that are not detectable subjectively since smaller changes can be detected by measurement and evaluation than by subjective assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号