首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the U.S. National Highway Traffic Safety Administration, in 2012, more than 4950 motorcyclists were killed in traffic accidents. Compared to passenger car occupants, mile for mile, motorcyclists are more than 26 times more at risk to dying in crashes. Due to the high fatality rate associated with motorcycle crashes, factors contributing to this type of crash must be identified in order to implement effective safety countermeasures. Given that the available datasets are large and complex, identifying the key factors contributing to crashes is a challenging task. Using multiple correspondence analysis, as an exploratory data analysis technique to determine the dataset structure, we identified the roadway/environmental, motorcycle, and motorcyclist‐related variables influencing at‐fault motorcycle‐involved crashes. This study used the latest available dataset (2009 to 2013) from the Critical Analysis Reporting Environment database to study motorcycle crashes in the state of Alabama. The most significant contributors to the frequency and severity of at‐fault motorcycle‐involved crashes were found to be light conditions, time of day, driver condition, and weather conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, red light cameras (RLCs) have been installed at many signalized intersections. The main reason behind installing RLCs is to reduce intersection‐related accidents caused because of a driver's behavior to cross the intersection when the signal turns red. By nature, if the driver is aware of the presence of RLC his or her driving behavior is bound to change. This behavioral change, however, may be intentional or unintentional. This may influence the utilization of yellow intervals resulting in a possible increase in dilemma zone, which in turn, may reduce the service capacity of the intersection. To accurately capture this capacity reduction, we present a probabilistic approach to modify the saturation flow rate formula in the Highway Capacity Manual that is currently used to calculate the capacity of signalized intersections. We introduce a new factor in the saturation flow rate calculation called red light reduction factor, to account for the capacity reduction owing to RLCs. Using field data from Baltimore, Maryland, we establish a relationship for the red light reduction factor. We then show that capacity of RLC‐equipped intersections is generally lower than that without RLCs. Although the percentage reduction in capacity of a single intersection may not seem significant, the cumulative impact of such reduction in a heavily traveled road network may be quite significant, resulting in significant loss in travel time. In future works, the systemwide capacity reduction owing to the presence of RLCs can be studied in congested transportation networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The objective of this research is to identify the factors differentiating between single heavy vehicle collisions at intersections and midblocks by using a binary logit model. Our results show that single vehicle crashes involving heavy vehicle at intersections are more likely to occur on main roads and highways, whereas crashes at midblocks are more likely to occur on divided two‐way roads, roads with special facilities or features (e.g. bridge) and roads with a higher percentage of heavy vehicle traffic. Intersection crashes are also more likely to involve vehicles that are turning left or right, resulting in angle crashes and vehicle overturn, whereas midblock crashes are more likely to involve vehicles on higher posted speed roads. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Proper intersection sight distance can effectively lower the possibility of intersection accidents. American Association of State Highway and Transportation Officials (2011) provide a series of recommended dimensions of intersection sight triangles for uncontrolled and stop/yield‐controlled intersections. However, in reality, although the actual intersection design for unsignalized intersections satisfies the requirements of sight distance and clear sight triangle in American Association of State Highway and Transportation Officials' guideline, there are still a large number of crashes occurring at unsignalized intersections for drivers running stop/yield signs or failing to slow down. This paper presents a driving simulator study on pre‐crash at intersections under three intersection field of view (IFOV) conditions. The aim was to explore whether better IFOVs at unsignalized intersections improve their emergent collision avoidance performance under an assumption of valid intersection sight distance design. The experimental results show drivers' ability to identify potential hazards to be significantly affected by their IFOVs. As drivers' IFOV improved, drivers were more likely to choose braking actions to avoid collisions. Better IFOVs were also associated with significant increases in brake time to intersection and significant reductions in deceleration rate and crash rate, thus leading to a lower risk of traffic crash involvement. The results indicate that providing a better IFOV for drivers at intersections should be encouraged in practical applications in order to improve drivers' crash avoidance capabilities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The maneuvering models of motorcycles in previous studies often considered motorcycles' traveling in terms of movements in a physical static lane and not in terms of dynamic virtual lane‐based movements. For that reason, these models are not able to imitate motorcyclists' behavior well. This paper proposes a maneuverability model framework for motorcycles in queues at signalized intersections with considering the dynamic motorcycle's lane. The model includes (i) a dynamic motorcycle's lane to identify the current, left, and right lanes of the subject motorcycle, (ii) a threshold distance to determine when a motorcyclist starts to consider maneuvering, (iii) a lane selection model to identify the lane preferred by a motorcyclist, and (iv) a gap acceptance model to describe whether or not the lead and lag gaps are acceptable for maneuvering. The model framework captures the variation across the motorcyclist population and over time observations. The models were applied to Hanoi and Hochiminh city, Vietnam, based on microscopic data collected from video images. All of the parameters were estimated using the maximum likelihood method with the statistical estimation software GAUSS. The results show that 77.88% of the observed maneuvers – either staying in the current lane or turning left or right – could be modeled correctly by the proposed models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to date. With the active development of next generation crash warning systems based on connected vehicle technologies, this study explored possible interface designs for motorcycle crash warning systems and evaluated their rider acceptance and effectiveness in a connected vehicle context. Four prototype warning interface displays covering three warning mode alternatives (auditory, visual, and haptic) were designed and developed for motorcycles. They were tested on-road with three connected vehicle safety applications - intersection movement assist, forward collision warning, and lane departure warning - which were selected according to the most impactful crash types identified for motorcycles. Combined auditory and haptic displays showed considerable promise for implementation. Auditory display is easily implemented given the adoption rate of in-helmet auditory systems. Its weakness of presenting directional information in this study may be remedied by using simple speech or with the help of haptic design, which performed well at providing such information and was also found to be attractive to riders. The findings revealed both opportunities and challenges of visual displays for motorcycle crash warning systems. More importantly, differences among riders of three major motorcycle types (cruiser, sport, and touring) in terms of rider acceptance of a motorcycle crash warning system were revealed. Based on the results, recommendations were provided for an appropriate crash warning interface design for motorcycles and riders in a connected vehicle environment.  相似文献   

10.
This study was to evaluate traffic safety of four‐legged signalized intersections and to develop a spreadsheet tool for identifying high‐risk intersections taking into consideration vehicle movements, left‐turn signal phase types, and times of day. The study used data from Virginia and employed count data models and the empirical Bayes (EB) method for safety evaluation of such intersections. It was found that crash pattern defined by vehicle movements involved in a crash and time of day are important factors for intersection crash analysis. Especially for a safety performance function (SPF), a model specification (Poisson or NB), inclusion of left‐turn signal types, type of traffic flow variables, variable functional forms, and/or magnitudes of coefficients turned out to be different across times of day and crash patterns. The spreadsheet application tool was developed incorporating the developed SPFs and the EB method. As long as Synchro files for signal plans and crash database are maintained, no additional field data collection efforts are required. Adjusting the developed SPFs and the spreadsheet for recent traffic and safety conditions can be done by applying the calibration methods employed in the SafetyAnalyst software and the Highway Safety Manual. Implementing the developed tool equipped with streamlining data entry would greatly improve accuracy and efficiency of safety evaluation of four‐legged signalized intersections in localities and highway agencies that cannot operate the SafetyAnalyst. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Road crashes are a leading cause of death and serious injuries both developed and developing countries. Intersections are recognized as being among the most hazardous locations on the roads. Although crashes at intersections form about 35 % of the reported accidents account for about 32% of traffic‐related serious injuries and fatalities in Singapore, there is no known study that examines the factors contributing to the severity of these crashes. In this study, the ordinal probit model was applied to crash data from 1992 to 2002 to investigate the role a variety of factors play in determining the severity of intersection crashes. Our study shows that vehicle type, road type, collision type, driver's characteristics and time of day are important determinants of the severity of crashes at intersections in Singapore.  相似文献   

12.
The primary objective of this paper is to provide a statistical relationship between traffic conflicts estimated from microsimulation and observed crashes in order to evaluate safety performance, in particular the effect of countermeasures. A secondary objective is to assess the effect of conflict risk tolerance and number of simulation runs on the estimates of countermeasure effects so obtained. Conflicts were simulated for a sample of signalized intersections from Toronto, Canada, using VISSIM microscopic traffic simulation and several crash–conflict relationships were obtained. A separate sample of treated intersections from Toronto was used to compare countermeasure effects from the integrated crash–conflict expression to a conventional, but rigorous crash-based Empirical Bayes before-and-after analysis that was already done, with the results published, for the same sites and treatment. The countermeasure considered for this investigation involved changing the left turn signal operation for the treated intersection sample from permissive to protected-permissive. The results support the view that countermeasure effects can be estimated reliably from conflicts derived from microsimulation, and more so when a suitable number of simulation runs and conflict tolerance thresholds are used in the crash–conflict relationship.  相似文献   

13.
This study applied the genetic programming (GP) model to identify traffic conditions prone to injury and property‐damage‐only (PDO) crashes in different traffic states on freeways. It was found that the traffic conditions prone to injury and PDO crashes can be classified into a high‐speed and a low‐speed traffic state. The random forest (RF) analyses were conducted to identify the contributing factors to injury and PDO crashes in these two traffic states. Four separate GP models were then developed to link the risks of injury and PDO crashes in two traffic states to the variables selected by the RF. An overall GP model was also developed for the combined dataset. It was found that the separate GP models that considered different traffic states and crash severity provided better predictive performance than the overall model, and the traffic flow variables that affected injury and PDO crashes were quite different across different traffic states. The proposed GP models were also compared with the traditional logistic regression models. The results suggested that the GP models outperformed the logistic regression models in terms of the prediction accuracy. More specifically, the GP models increased the prediction accuracy of injury crashes by 10.7% and 8.0% in the low‐speed and high‐speed traffic states. For PDO crashes, the GP models increased the prediction accuracy by 7.4% and 6.0% in the low‐speed and high‐speed traffic states. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

15.
Enhancing the safety level of urban roads especially in CBDs is paramount. Due to a large number of intersections in what is usually a grid road system in the CBDs, we investigate crashes occurring in and around an intersection. The question of interest in this study is: does the nature of crashes at intersections differ from those of the roads at midblock? Stated more precisely, considering the intersection as a reference point, does the distance to the reference point (i.e. midblock locations on the roads) correlate with different types of crashes compared to that of the intersection? A right answer can lead traffic engineers and safety auditors to propose different safety measures at intersections and the midblock locations. As a pilot study, we collected the last 9 years crash data of the CBD of Melbourne, Australia. For the first time, we employ Survival Analysis models -including Exponential, Weibull, and Log-logistic- to investigate a space-dependent phenomenon (i.e. accidents at proximity to the intersection). Of the outcome, highlights are: (i) police presence at busy intersections during busy night outs and weekends highly improves the pedestrian safety (ii) raised crossings at midblock locations lower likelihood of crashes of pedestrians as well as cars, (iii) lighting conditions at intersections must be watched and kept at a high level. (iv) Severity, likelihood, and location have no known association with the level of congestion. In other words, safety is first, always and everywhere. The results can be of interest to traffic authorities and policy makers in reinforcing traffic calming measures in the cities. The codes developed in this study are made available to the research community to be used in further studies.  相似文献   

16.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The safety of signalized intersections has often been evaluated at an aggregate level relating collisions to annual traffic volume and the geometric characteristics of the intersection. However, for many safety issues, it is essential to understand how changes in traffic parameters and signal control affect safety at the signal cycle level. This paper develops conflict-based safety performance functions (SPFs) for signalized intersections at the signal cycle level. Traffic video-data was recorded for six signalized intersections located in two cities in Canada. A video analysis procedure is proposed to collect rear-end conflicts and various traffic variables at each signal cycle from the recorded videos. The traffic variables include: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The SPFs are developed using the generalized linear models (GLM) approach. The results show that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of conflict occurrence beyond what can be expected from the traffic volume only. Furthermore, space-time conflict heat maps are developed to investigate the distribution of the traffic conflicts. The heat maps illustrate graphically the association between rear-end conflicts and various traffic parameters. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The overall goal is to use the developed models for the real-time optimization of signalized intersection safety by changing the signal design.  相似文献   

18.
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems, which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard‐based models to develop in‐depth insights into how the crash‐specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland, and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, has been compared with random parameter AFT structures in terms of goodness of fit to the duration data, and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway 1 exhibits durations that are on average 19% shorter compared with the durations on motorway 2. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.  相似文献   

19.
Shared lanes at signalized intersections are designed for use by vehicles of different movement directions. Shared lane usage increases the flexibility of assigning lane grouping to accommodate variable traffic volume by direction. However, a shared lane is not always beneficial as it can at time result in blockage that leads to both capacity and safety constraints. This paper establishes a cellular automata model to simulate traffic movements at signalized intersections with shared lanes. Several simulation experiments are carried out both for a single shared lane and for an approach with a shared lane. Simulation of a single shared lane used by straight‐through and right‐turn (as similar to left‐turn in the USA) vehicles suggests that the largest travel delay occurs when traffic volumes (vehicles/lane) of the two movement streams along the shared lane are at about the same level. For a trial lane‐group with a shared lane, when traffic volumes of the two movement streams are quite different, the shared lane usage is not efficient in terms of reduction in traffic delay. The simulation results are able to produce the threshold traffic volume to arrange a shared lane along an approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号