首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
主要从放电容量、放电中值电压、充电时间、恒流容量百分比四个方面研究了充电限制电压从3.25至3.85范围变化对磷酸铁锂电池性能的影响。实验结果表明:对于磷酸铁锂材料的锂离子电池,采用恒流恒压的充电方案,对于磷酸铁锂电池,结合安全性考虑,充电限制电压设定在3.55~3.70V较合理,推荐值为3.60V~3.65V。  相似文献   

2.
主要从放电容量、放电中值电压、放电能量3个方面研究了低温阶段与高温阶段两阶段温度对磷酸铁锂电池性能的影响,同时还对比了低温(-20℃)充放电与常温充电、低温放电2种情况下放电容量,最后考察了48V180Ah电池组(15串)在充放电过程中电池组内不同区域的温度场分布情况。实验结果表明:对于实验的样品,低温对电池影响较大,...  相似文献   

3.
主要从放电容量、放电中值电压、放电能量三个方面研究了低温阶段(25℃至-20℃)与高温阶段(25℃至60℃)两阶段温度对磷酸铁锂电池性能的影响,同时还对比了低温(-20℃)充放电与常温充电低温放电两种情况下放电容量,最后考察了48V/180Ah电池组(15串)在充放电过程中电池组内不同区域的温度场分布情况。实验结果表明:对于实验的样品,低温对电池影响较大,-20℃是其低温坎;高温下电池性能变化不明显,温度50℃以上,电池性能开始下降,推荐使用温度范围0℃~50℃;常温充电相比低温充电其放电容量仅提升10%;电池组在使用过程中,最内部的单体与最外面的单体温度差异可达12℃。  相似文献   

4.
为研究车载磷酸铁锂动力电池的充电特性,对200A.h/3.2V磷酸铁锂电池进行充电实验,分析充电电流、放电深度和充电截止电压对动力电池充电特性的影响。据此,提出了一种动力电池的充电方法。试验结果表明该方法既可对动力电池进行比较快速的充电,又可减小动力电池损坏的危险,从而延长其循环寿命。  相似文献   

5.
此文从实验角度考察了当SOC状态不一致的两电池(0%/100%)并联时并联搁置阶段、放电阶段以及放电结束后的静置阶段的干路电压及支路电流变化情况,并比较了并联充放电与单体单独充放电的放电容量间的差异。实验结果表明:当开路电压相差较大时,其接触时的瞬间电流非常大,此情形可能会对电池造成伤害,因此应尽量避免开路电压相差较大的电池直接并联;在并联搁置时,电压较高的电池会对电压较低的电池进行充电,起到自我均衡的作用;并联恒流放电过程中,经过并联单体的支路电流不断变化;并联放电结束后,两电池之间仍然在相互充电以达到电压平衡;无论并联整体放电还是并联后单体单独放电,其容量均与单体独自放电容量相当。SOC不一致电池并联不会对容量产生不利影响。  相似文献   

6.
以优化锂电池充电极化电压,提高充电效率为目标,研究了电池充电极化电压与SOC的关系、停歇与极化电压降的关系、放电幅值与极化电压降的关系。研究结果表明:在充电初期与充电快完成阶段,极化电压变化极大;停歇与放电能有效地降低极化电压,停歇的时间越长,极化电压降低得越多;放电幅值越大,极化电压降越大。在此基础上,以降低极化电压作为电池充电性能的评价指标,提出了基于降低极化电压的优化充电方法,并与恒流充电方法和变电流间歇充电方法的充电性能进行了对比分析。试验结果表明,提出的方法在充电效率上高于恒流充电与变电流间歇充电2到3倍,大大缩短了充电时间,充电效率达到了95.36%。  相似文献   

7.
对环境温度为5℃的磷酸铁锂动力电池模块进行预加热后对其充电。结果表明,电池模块在15~20min之间温升最快,加热50min后温度趋于稳定;5℃时充电容量为25℃时最大充电容量的90%;预加热60min后充电容量约为25℃时最大充电容量的97%。  相似文献   

8.
针对动力电池在低温环境下放电能力下降带来的性能限制,以某款搭载了额定容量为271Ah磷酸铁锂电池的纯电动汽车为研究对象,设计了蓄电池模块低温放电容量试验和低温环境电池动态电压测试,探究动力电池的低温性能表现及其对整车行驶过程的影响。试验数据表明,相比于常温下动力电池的放电性能,低温环境下电池放电容量及电压显著下降,由此造成的放电电流限制对车辆行驶造成了一定的影响。  相似文献   

9.
充电绕组是摩托车无触点电容放电点火系统(CDI)中重要的电气配件和工作电源。点火系统工作时。充电绕组要向电子点火器输送200V~300V的交流电。若充电绕组出现故障。通常采用万用表检测充电绕组的直流电阻值和交流输出电压有效值,以此来判断充电绕组是否完好。由于检测的准确性不是很高。其结果就不能如实反映充电绕组的真实技术状态。  相似文献   

10.
一、技术方案简介该技术利用220V或380V标准交流电源,通过车辆发电机的二极管桥式整流电路,巧妙的将交流电源降压整流后,直接就车给车辆蓄电池进行补充恒流储能充电,不必将车辆蓄电池从汽车上拆下来,就可以随时进行储能充电,改变了车辆蓄电池恒流储能充电必须在充电间进行的现状,节约了时间,提高了维护保养效率,有利于延长车辆蓄电池的使用寿命,具有较好的应用价值。  相似文献   

11.
快速高效的充电方式对于推动汽车电动化,加快以石油为主导的传统交通能源向绿色低碳能源转型,实现中国"双碳战略"的目标具有重要意义。针对充电时间和充电损失的平衡优化问题,提出了一种基于SOC自适应分阶的两步优化多阶恒流充电策略。为实现充电过程的优化分阶,利用改进的二分K-means算法对基于内阻曲线的采样点集进行聚类,实现了充电区间关于内阻变化和分布特征的自适应划分。基于分阶优化结果,采用改进的非支配排序哈里斯鹰优化算法(INSHHO)求解优化电流对应帕累托前沿。利用Logistic混沌初始化及自适应t分布突变算子对哈里斯鹰模型(HHO)进行改进,进一步提升算法的全局寻优能力。最后通过充电对比试验,将优化多阶恒流充电策略与恒流恒压策略(CC-CV)和均分多阶恒流充电策略在不同充电时间条件下进行充电性能对比。结果表明:在充电时间保持一致的条件下,提出的优化多阶恒流充电策略较恒流恒压策略和均分多阶恒流充电策略的充电欧姆损失最大分别减少1.03%和0.3%;在温升表现上,优化多阶恒流充电策略较均分多阶恒流充电策略的充电温升最多降低了0.82℃。  相似文献   

12.
汽车、摩托车12V蓄电池充电电压国家标准规定值为14.2±0.25 V;《摩托车和轻便摩托车用调节器技术条件》中规定,摩托车从“最低调压转速至最高转速”,12V蓄电池的充电电压值为14.5±0.5 V。 一般认为12V蓄电池在浮充电电压13.5~13.8 V下充电就可以了;加上摩托车发动机长期处在转速1 200~2 500 r/min下运行,使充电电压为12.05~12.6 V。这两种情况下,12V蓄电池的充电电压均低于国标规定值。 摩托车发动机处于低速运行或蓄电池长期处于欠充电状态,会加快蓄电池极板的硫化,不但摩托车电起动困难、照明效果不佳,而且还会缩短蓄电池的使用寿命。出现以上问题是因为使用稳压效果很差的短路型调节器,这种调节器的缺陷就是浪费能源,通过短路将电能浪费掉,使充电电压达不到规定要求。当前一种全新的开关型节能调节器能彻底解决摩托车充电电压不稳定的问题,使充电实现智能化自动控制,充电效果得到明显改善。现将此电路介绍给大家,以供参考。  相似文献   

13.
为提高锂离子电池容量在线估计精度,本文中提出一种基于部分充电曲线特征容量在线辨识和阿伦尼乌斯容量衰减模型融合的自适应容量估计方法。针对纯电动汽车极少存在完整充电的情况,提出一种基于恒流充电电压特征点的容量在线辨识方法。该方法先利用遗传算法对缩放平移后的充电曲线进行电压特征点优化,再通过监测有关这两个不动的电压特征点的恒流充电数据,在线辨识电池的当前容量。为进一步提高容量在线估计的精度,通过增量式PID算法来融合容量在线辨识值和阿伦尼乌斯模型,进行模型参数的闭环修正。最后,交变温度寿命实验结果表明,利用本文中提出的自适应估计方法,最大估计误差不超过2%。  相似文献   

14.
采用电池的一阶RC等效电路模型对低温充电过程进行分析,提出一种适用于低温条件的锂离子电池多阶段恒流充电方法。以三元聚合物锂离子电池和磷酸铁锂电池作为对象,分别在0℃和-10℃条件下进行常规恒流-恒压与多阶段恒流充电方法的测试与对比分析。试验结果显示,与常规恒流-恒压充电方法相比,采用多阶段恒流充电方法,0℃和-10℃条件下,两种电池的充电时间明显缩短,充入电量显著提高。  相似文献   

15.
针对电动汽车在行驶过程中电池的放电电流不断变化,采用恒流充放电条件下建立的电池寿命模型来估计电池的寿命将带来较大误差的问题,本文中在对某一现有磷酸铁锂电池恒流充放电容量衰减模型进行实验验证的基础上,推导了电动汽车行驶工况条件下,磷酸铁锂电池的循环工况寿命预测模型,并采用NEDC循环工况对该模型进行了实验验证。结果表明,采用该模型能较准确地对电动汽车行驶过程中的寿命进行估计。  相似文献   

16.
高立 《摩托车》2006,(1):48-48
电容放电式电子点火器,从点火器内部对储能电容的充电方式来讲有两种。一是磁电机充电,在摩托车磁电机总成里有专用的充电线圈。二是直流升压充电,这种点火器一般采用蓄电池的直流电源,磁电机内部没有充电线圈,在点火器内部有一部分电路是先把蓄电池送来的直流电通过振荡升压电路将直流电变成恒定的高频交流电,其电压一般在220-360V之间,再经二极管整流给储能电容充电,这种振荡升压电路均采用恒压控制,即蓄电池电压从7-18V之间变化时,振荡升压电路变换出来的交流电的电压保持一定的数值不变。这种技术一般用在高档摩托车上。它克服了磁电机充电在高转速和低转速时充电电压相差甚远的弊端。不论是磁电机充电还是直流升压充电,点火器电路的最后输出极的工作原理大致是一样的,均为可控硅的触发端被触发信号触发后导通,使储存在电容上的电荷向点火线圈的初级放电,从而在次级线圈里感应产生上万伏的高压实现火花塞间隙放电点火。  相似文献   

17.
新蓄电池的充电,按要求应进行几次充、放电循环,使极板在储存中生成的硫化层全部变成活性物质,以达到额定容量。已充好电的蓄电池单格电压可达2.4伏或更高,之后则开始以其额定容量1/10的值的电流放电,到单格电压降至1.7伏为止。放电时,通常采用灯泡或电阻丝。其缺点是:器材的消耗量较大,放电用不着的灯泡常被烧坏;当放电以恒定额定电流进行时(一般需放十几个小时),这部分的能量白白地消耗掉。为不使这部分电能浪费,用这部分放电电流为电量不足的蓄电池充电。  相似文献   

18.
本文介绍了阀控铅蓄电池快速充电的实验结果,实验结果表明:采用5~15分钟的快速充 可能的:充入容量为上次放电容量的50~80%;温升10-18%;快速充电对阀控铅蓄电池的循环寿命是有利的。  相似文献   

19.
《世界汽车》2009,(4):133-133
2月16日,奇瑞首辆自主研发的纯电动汽车S18顺利下线。奇瑞S18电动汽车是在S18整车平台上开发的一款高速纯电动轿车.整车搭载了336V40kW大功率电驱动系统,配备了40Ah的高性能磷酸铁锂电池。充电对消费者来说也非常快捷和方便.利用220V民用电充电即可,充电时间一般在4~6h;还可以进行快速充电,30min即可充到电池容量的80%。该车最高车速可以达到120km/h.一次充电续航里程可以达到120~150km。  相似文献   

20.
<正>目前,汽车所使用的蓄电池多为铅酸蓄电池。车辆起动或低速时,由蓄电池对全车用电设备供电;车辆正常行驶时,由车上发电机对蓄电池充电。铅酸蓄电池固有特性要求:1块6单格蓄电池要完全充足电,需外加16.5V左右的直流电压。图1所示为铅酸蓄电池充电特性曲线,充电过程中的电压变化规律为:初始充电,蓄电池电压缓慢上升;当蓄电池电压上升至14.4V左右,电解液开始出现气泡;当充电电压达到16.5V左右,电解液出现"沸腾"现象;此后继续充电  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号