首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phytoplankton community structure was investigated in a 1-year study period from January to December 2006 in the Tunis North Lagoon (South Mediterranean). Twice a month, sampling was carried out from the whole water column. Phytoplankton species composition showed seasonal dynamics following the general environmental variable trends in the study area, with variation in species abundance levels within each season characterised by the presence of different phytoplankton communities. Analysis of environmental variables indicated that phytoplankton-dominant communities were associated with various water physicochemical characteristics, especially water temperature and salinity. Accordingly, significant correlation was recorded between water temperature and dinoflagellates (r = 0.35; p < 0.05) in summer and diatoms (r = 0.69; p < 0.05) in autumn, whereas euglenophytes, cyanophytes and chlorophytes were slightly correlated with temperature in autumn. Salinity was positively correlated with dichtyophytes (r = 0.41; p < 0.05) in winter and with diatoms (r = 0.65; p < 0.05) and euglenophytes (r = 0.57; p < 0.05) in autumn. On the other hand, relationships between high nitrogen nutrient concentration and phytoplankton concentration were recorded for diatoms (r = 0.43; p < 0.05 with NO2; r = 0.49; p < 0.05 with NO3) in winter. Silicate concentration supported proliferation of diatoms (r = 0.58; p < 0.05) in autumn in our study period. In contrast, increase of dinoflagellate concentration was associated with the decrease of these parameters in spring and summer.  相似文献   

2.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

3.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

4.
5.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

6.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

7.
We present concurrent data on ingestion, egg production and the loss of maternal biomass in pre-spring bloom female Calanus finmarchicus incubated under conditions representative of those in situ in the North Atlantic. A balanced metabolic budget was constructed and used to examine the relative importance of ingestion and biomass for fuelling egg production during the incubations. Ingested carbon was not sufficient to meet the observed demands for egg production. More than 80% of the carbon utilised by the females was instead derived from their biomass. Fatty acid analysis demonstrated that the storage reserves, 20:1 (n−9) and 22:1 (n−11), were virtually absent before experimentation began, and therefore could not have been used to supply the carbon required for egg production during the incubations. The C:N mass-specific ratio of the biomass utilised was 4.1, suggesting that the females had instead catabolised protein in order to meet their metabolic demands. These results suggest that C. finmarchicus adopts a sacrificial reproductive strategy when food availability is low.  相似文献   

8.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

9.
The effect of turbulence on the nutrient flux towards osmotrophic cells is predicted to be size dependent. This should translate into growth. We experimentally followed and modelled the growth of two marine diatoms of different size (Thalassiosira pseudonana, 6 μm in diameter and Coscinodiscus sp., ca. 109 μm in diameter) under still water and turbulent conditions, using a shaker table. Experiments were done with phosphorus-limited cultures and lasted for ca. 5 days. Turbulence enhanced the growth of Coscinodiscus sp. in agreement with theory but not the growth of T. pseudonana, which was actually slightly lower under turbulence. At the end of the experiments there were about 1.7 times as many Coscinodiscus sp. cells in the turbulent treatment than in the still treatment, while for T. pseudonana almost the same cell concentration was found in both conditions. In addition, the Coscinodiscus sp. cells growing under still conditions presented a higher specific alkaline phosphatase activity than those growing in turbulence which indicates a higher need for phosphorus in the still cultures. A simple dynamic model, based on Michaelis–Menten nutrient uptake kinetics, needed nearly no optimisation other than using observed initial conditions of phosphate and cell concentrations. The model showed how an increased nutrient flux towards the cells translates non-linearly into cell growth, most likely by affecting the half-saturation constant (KM). However, since Coscinodiscus sp. experienced significant mortality and cells partially settled to the bottom of the containers, unequivocal support for the size-dependent effect of turbulence on nutrient uptake will require further experiments and more sophisticated modelling. The mechanisms to connect an increased nutrient flux towards cells with population growth and whether this process is size dependent are important in parameterizing the effects of turbulence on marine plankton in coupled physical–biological models.  相似文献   

10.
During a repeat grid survey and drogue study carried out in austral summer 1994/95, the abundance and feeding activity of salps were estimated in the Lazarev Sea region from net tows and in situ measurements of gut fluorescence. Throughout the survey area, Salpa thompsoni accounted for >95% of the total salp stock while Ihlea racovitzai was consistently represented in very low abundances. Maximum densities of S. thompsoni, with ≈4000 ind. 1000 m−3, were recorded in the Marginal Ice Zone (MIZ) in December when chlorophyll-a concentrations were well below 1 mg m−3. A dramatic decrease in salp stock was observed at the beginning of January, when S. thompsoni virtually disappeared from the most productive area of the MIZ where chlorophyll-a concentrations had by then reached bloom levels of 1.5–3 mg (Chl-a) m−3. In situ grazing measurements showed that throughout the cruise S. thompsoni exhibited the highest ingestion rates per individual of any of the most abundant components of the grazing pelagic community, with maxima of ≈160 μg (pigm) ind. −1 d−1. These feeding rates are 3 to 5 times higher than those previously obtained using in vitro incubations. The total daily consumption of the population of S. thompsoni varied from 0.3 to 108% of daily primary production. We suggest that competitive removal of food by S. thompsoni, rather than direct predation, is responsible for the low krill abundances generally associated with salp swarms.  相似文献   

11.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

12.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

13.
We present an approach that allows the estimation of vertical eddy diffusivity coefficients from buoy measurements made at two or more depths. By measuring the attenuation and phase lag of a scalar signal generated periodically at the surface as it propagates downwards, the vertical eddy diffusivity coefficients can be calculated as KωΔz2/2ln221), where α21 is the ratio of the real amplitudes at frequency ω at the two depths separated by Δz− z1; as KωΔz2/2, where φ is the phase lag at the frequency ω; or as KΔz2/ln2(U2/U1), where U2/U1 is the ratio of the complex signal amplitudes at the two depths. The method requires that horizontal fluxes be small at the ω frequency and that the signal-to-noise ratios at the two depths allow the determination of the amplitude and phase of ω.Application of this method to summertime 2004 western Long Island Sound oxygen and temperature buoy measurements at two depths provides a time-series of two-day average vertical eddy diffusivity estimates. Using these eddy diffusivities in conjunction with measured vertical concentration gradients, we obtain a time-series of vertical transport rates for oxygen and heat and estimate mean downward fluxes for June and July as 150–260 mMol m− 2 day− 1 and 100–400 W m− 2 respectively. These estimates are of a similar magnitude to sub-pycnocline O2 and heat demands of 240 ± 200 mMol m− 2 day− 1 and 180 ± 60 W m− 2 that we infer from simple budgets, implying that vertical transport is significant to both budgets.The eddy coefficients obtained from the independent O2 and temperature measurements have a 68% correlation, and the O2 flux estimates show a correlation of 41% to measured rates of change in bottom dissolved oxygen levels. Our results indicate that extended time-series of eddy diffusivity coefficients can be obtained from in situ buoy measurements and the method shows promise as a way to constrain the vertical transport variability in budgets of dissolved materials in estuaries.  相似文献   

14.
100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea)   总被引:1,自引:0,他引:1  
Literature data from 1905/06, 1912/13 and 1949/50 were compared with recent data (2001–2003) from Kiel Bight in order to investigate changes in phytoplankton composition and biomass, which may serve as indicators of environmental changes. In terms of biomass, diatomophyceae and dinophyceae are by far the most important groups. Their ratio is still close to unity. The share of diatomophyceae increased strongly in years with exceptionally high summer blooms (2001) or exceptionally early spring blooms (2003). The summer and autumn blooms of Chaetoceros and Skeletonema, detected in the early 20th century, are replaced by other diatoms (Cerataulina pelagica, Dactyliosolen fragilissimus, Proboscia alata, Pseudo-nitzschia spp.). Chaetoceros and Skeletonema are still important components of the spring blooms. Now as before, the autumn blooms are dominated by Ceratium spp., sometimes also by diatoms. Newly appearing bloom-forming species are mostly potentially toxic (Dictyocha speculum, Prorocentrum minimum, Pseudo-nitzschia spp.). The total phytoplankton biomass has roughly doubled in the course of the last century. The reference condition for phytoplankton biomass in Kiel Bight in the sense of the Water Framework Directive was defined at 55 mg C m− 3 (± 10%, annual mean). The mean annual biomass of diatomophyceae and dinophyceae was 25 mg C m− 3 (± 40%) for each, indicating that the sum of their carbon biomass amounted to 90% (± 10%) of the total phytoplankton biomass on an annual average. Diatomophyceae represented at least 80% of carbon biomass in the spring bloom peak at the beginning of the 20th century.  相似文献   

15.
The behavior of a ship encountering large regular waves from astern at low frequency is the object of investigation, with a parallel study of surf-riding and periodic motion paterns. First, the theoretical analysis of surf-riding is extended from purely following to quartering seas. Steady-state continuation is used to identify all possible surf-riding states for one wavelength. Examination of stability indicates the existence of stable and unstable states and predicts a new type of oscillatory surf-riding. Global analysis is also applied to determine the areas of state space which lead to surf-riding for a given ship and wave conditions. In the case of overtaking waves, the large rudder-yaw-surge oscillations of the vessel are examined, showing the mechanism and conditions responsible for loss of controllability at certain vessel headings.List of symbols c wave celerity (m/s) - C(p) roll damping moment (Ntm) - g acceleration of gravity (m/s2) - GM metacentric height (m) - H wave height (m) - I x ,I z roll and yaw ship moments of inertia (kg m2) - k wave number (m–1) - K H ,K W ,K R hull reaction, wave, rudder, and propeller - K p forces in the roll direction (Ntm) - m ship mass (kg) - n propeller rate of rotation (rpm) - N H ,N W ,N R hull reaction, wave, rudder, and propeller - N P moments in the yaw direction (Ntm) - p roll angular velocity (rad/s) - r rate-of-turn (rad/s) - R(,x) restoring moment (Ntm) - Res(u) ship resistance (Nt) - t time (s) - u surge velocity (m/s) - U vessel speed (m/s) - v sway velocity (m/s) - W ship weight (Nt) - x longitudinal position of the ship measured from the wave system (m) - x G ,z G longitudinal and vertical center of gravity (m) - x S longitudinal position of a ship section (S), in the ship-fixed system (m) - X H ,X W ,X R hull reaction, wave, rudder, and propeller - X P forces in the surge direction (Nt) - y transverse position of the ship, measured from the wave system (m) - Y H ,Y W ,Y R hull reaction, wave, rudder, and propeller - Y p forces in the sway direction (Nt) - z Y vertical position of the point of action of the lateral reaction force during turn (m) - z W vertical position of the point of action of the lateral wave force (m) Greek symbols angle of drift (rad) - rudder angle (rad) - wavelength (m) - position of the ship in the earth-fixed system (m) - water density (kg/m3) - angle of heel (rad) - heading angle (rad) - e frequency of encounter (rad/s) Hydrodynamic coefficients K roll added mass - N v ,N r yaw acceleration coefficients - N v N r N rr N rrv ,N vvr yaw velocity coefficients K. Spyrou: Ship behavior in quartering waves - X u surge acceleration coefficient - X u X vr surge velocity coefficients - Y v ,Y r sway acceleration coefficients - Y v ,Y r ,Y vv ,Y rr ,Y vr sway velocity coefficients European Union-nominated Fellow of the Science and Technology Agency of Japan, Visiting Researcher, National Research Institute of Fisheries Engineering of Japan  相似文献   

16.
The North Bay of Biscay continental shelf is a major French demersal fishery, but little was known on the trophic food web of its benthic communities. In order to determine the benthic trophic web, the objectives of this study are to describe the macro- and megafaunal benthic community structure (species richness, abundance and biomass) and to establish the trophic pathways (food sources and trophic levels) by applying carbon and nitrogen stable isotopic analysis to the main benthic and demersal species (invertebrates and fish). Two distinct benthic communities have been identified: a muddy sand community within the central part of the bay, and an outer Bay of Biscay Ditrupa sand community of higher species richness, abundance and biomass than the muddy sand community. Deposit-feeders, suspension feeders and predators, distributed in three main trophic levels, dominate both communities. Large differences in stable carbon ratio values within the primary consumers provide evidence of two different food sources: i) a pelagic food source made up of recent sedimenting particulate organic matter on which zooplankton and suprabenthos feed and ii) a benthic detrital food source supplying deposit feeders and partly benthic suspension feeders. Differences in isotopic signatures were also observed within the upper trophic levels that allowed estimation of the contribution of each food source component to the diet of the upper consumers. Finally, the use of stable isotopic composition together with the species' feeding strategy allow identification of the main differences between the trophic functioning of the two benthic communities and highlight the importance of the role of detrital pathways in the carbon cycling within the continental shelf benthic trophic web.  相似文献   

17.
Many accidents are caused by fatigue in welded built-up steel structures, and so it is important to estimate the fatigue lives of such structures quantitatively for safety reasons. By assuming that fatigue cracks cannot grow without an accumulation of alternating tensile/compressional plastic strain, one of the authors identified an improved effective stress intensity factor range ΔK RPG based on the re-tensile plastic zone generating (RPG) load, which represents the driving force for fatigue cracks, and suggested that ΔK RPG should be used as the parameter to describe fatigue crack growth behavior. The “FLARP” numerical simulation code in which ΔK RPG is implemented as the fatigue crack growth parameter, was developed in order to predict fatigue crack initiation and propagation behavior. In this paper, it is demonstrated that FLARP gives accurate estimates for fatigue life by comparing the estimated fatigue crack growth curves and SN curves with the experimental results for in-plane gusset welded joints, which are used in many welded steel structures. Moreover, the effect of induced bending moment due to the linear misalignment in the out of plane direction on the fatigue strength of in-plane gusset welded joints is investigated through numerical simulations.  相似文献   

18.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

19.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   

20.
Sediment community metabolism (oxygen demand) was measured in the Northeast Water (NEW) polynya off Greenland employing two methods: in situ benthic chambers deployed with a benthic (GOMEX) lander and shipboard laboratory Batch Micro-Incubation Chambers (BMICs) utilizing ‘cores’ recovered from USNEL box cores. The mean benthic respiration rate measured with the lander was 0.057 mM O2 m−2 h−1 (n = 5); whereas the mean measured with the BMICs was 0.11 mM O2 m−2 h−1 (n = 21; p < 0.01 that the means were the same). In terms of carbon fluxes (14 and 27 mg C m−2 d−1), these respiration rates represent ca. 5–15% of the average net primary production measured in the euphotic zone in 1992. The biomass of the bacteria, meiofauna and macrofauna were measured at each location to quantify the relationship between total community respiration and total community biomass (mean 1.42 g C m−2). Average carbon residence time in the biota, calculated by dividing the biomass by the respiration, was on the order of 50–100 days, which is comparable to relatively oligotrophic continental margins at temperate latitudes.The biomass and respiration data for the aerobic heterotrophic bacteria, the infaunal invertebrates (meiofauna and macrofauna), and the epifaunal megabenthos (two species of brittle stars) are summarized in a ‘steady-state’ solution of a sediment food chain model, in terms of carbon. This carbon budget illustrates the relative importance of the sediment-dwelling invertebrates in the benthic subsystem, compared to the bacteria and the epibenthos, during the summer open-water period in mud-lined troughs at depths of about 300 m. The input needed to drive heterotrophic respiratory processes was within the range of the input of organic matter recorded in moored, time-sequencing sediment traps.A time-dependent numerical simulation of the model was run to investigate the potential responses of the three size groups of benthos to abrupt seasonal pulses of particulate organic matter. The model suggests that there is a time lag in the increase in bottom community biomass and respiration following the POC pulse, and provides hypothetical estimates for the potential carbon storage in the summer (open water), followed by catabolic losses during each ensuing winter (ice covered).This sequence of storage and respiration may contribute to the process of seasonal CO2 ‘rectification’ (sensu Yager et al., 1995) in some Arctic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号