首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过34个表层嵌贴CFRP板条的混凝土棱柱试件的单剪试验,考察了混凝土强度、黏结长度、开槽宽度、槽壁厚度等因素作用下表层嵌贴CFRP板条的混凝土试件的破坏形式、黏结承载力和CFRP应变分布等性能,分析了上述因素对CFRP板条-混凝土界面黏结性能的影响.试验结果表明:嵌贴CFRP板条-混凝土间的黏结承载力随混凝土强度增大而提高;在界面极限荷载随黏结长度增加而增大,破坏形式由界面黏结破坏转变为CFRP拉断,未观察到有效黏结长度存在;剥离后黏结界面存在残余摩擦力,并与黏结长度近似线性相关;开槽宽度增大时试件黏结承载力有所提高,但未观察其到对界面黏结行为产生显著影响;槽壁厚度过小时试件黏结承载力下降,并发生界面黏结破坏或槽壁混凝土破坏,槽壁厚度超过40 mm后CFRP-混凝土界面黏结性能趋于稳定.  相似文献   

2.
为研究嵌贴的CFRP与混凝土间的黏结性能及黏结滑移关系,对22个嵌贴CFRP加固混凝土棱柱体试件进行了单剪拔出试验,考察了混凝土强度、槽宽、槽边距、树脂保护层厚度、及构件截面尺寸等因素对嵌贴CFRP-混凝土界面的黏结承载力、破坏模式、黏结刚度、黏结滑移关系等性能的影响;在试验结果基础上提出了含残余摩擦段的三段式黏结滑移关系模型,进而明确了混凝土强度与槽边距等因素与峰值黏结应力等模型特征参数的相关性,最终在上述工作基础上建立了首次考虑混凝土强度、槽宽、槽边距等多因素影响的黏结滑移关系模型。研究结果表明:所考察的各因素对嵌贴CFRP与混凝土界面的黏结性能及黏结滑移关系存在显著影响;运用最小二乘法得到的含特征参数的黏结滑移关系模型对界面断裂能的预测精度优于现有其他模型;所建立的考虑多因素影响的黏结滑移关系模型预测的峰值黏结剪应力与文献试验实测值的相关系数为0.65,预测精度较高。  相似文献   

3.
为了更好地描述钢管混凝土界面黏结-滑移关系,该文基于已有试验研究提出了适用于钢管混凝土界面黏结-滑移关系的简化模型,通过对比已有试验结果和黏结强度简化计算表达式的计算结果对公式的有效性进行了验证。基于简化黏结强度计算公式模型,该文结合数值分析软件中的非线性弹簧单元对已有钢管混凝土的短柱推出试验进行了数值分析,数值分析结果证明,简化黏结强度计算模型结合数值分析软件中的非线性弹簧可以有效地模拟钢管与混凝土之间的黏结-滑移关系。通过进一步建立考虑黏结-滑移、不考虑黏结-滑移、完全黏结3种钢管混凝土界面形式的数值分析模型,对钢管混凝土压、弯、扭3种力学性能进行模拟研究,最后发现考虑黏结-滑移模型与试验结果较为接近,不考虑黏结-滑移模型的计算结果小于试验结果,完全黏结模型计算结果大于试验结果。  相似文献   

4.
为了研究型钢-钢纤维混凝土界面的黏结应力组成,以截面类型、界面锚固长度、钢纤维掺量和钢纤维混凝土保护层厚度为变化参量,完成了34根试件的推出试验,分析了试件的损伤破坏及裂缝发展形态,获得了加载端和自由端的荷载-滑移曲线。基于荷载-滑移曲线上的4种临界状态,根据界面黏结应力与外荷载的平衡关系,提出了黏结应力各组成部分的计算公式,最后分析了各因素对界面黏结应力的影响规律。研究结果表明:黏结界面的失效可分为3个阶段,即界面无损阶段、界面黏结部分失效及裂缝发展阶段、界面黏结完全失效及试件破坏阶段;型钢与钢纤维混凝土界面的黏结应力是由化学胶结应力、摩擦应力和机械咬合应力3种应力共同组成,黏结应力沿界面长度方向呈非均匀分布状态,其中化学胶结应力只存在于固定黏结扩散区;界面黏结应力组成中,化学胶结应力所占比重最大,摩擦应力次之,机械咬合应力最小;化学胶结应力随界面锚固长度的增加而减小,摩擦应力随钢纤维混凝土保护层厚度和钢纤维掺量的增加而增大,机械咬合应力随钢纤维混凝土保护层厚度的增加而增大。  相似文献   

5.
恶劣环境影响下纤维增强复合材料(CFRP)板加固钢结构的黏结界面是薄弱环节.为掌握恶劣环境对加固界面黏结性能的影响程度,制作了干湿、冻融和冻融/干湿交互环境作用的CFRP板-钢双搭接试件,开展了试件的拉伸试验,分析了试件破坏模式、极限承载力、界面剪应力及分布、黏结-滑移关系和界面刚度变化等.结果 表明:多数试件发生CF...  相似文献   

6.
为了研究SMA(沥青玛蹄脂)摊铺高温作用后CFRP板-混凝土界面剥离破坏,采用SMA摊铺的高温作用后的界面有限单元进行剥离破坏准则定义和回归分析。借助大型通用有限元软件MSC.MARC调用界面有限单元并对CFRP板箱梁桥顶板进行有限元模拟。通过有限元分析可以看出:当荷载值比较小时,CFRP板-混凝土界面未产生裂缝,CFRP板与混凝土间黏结性能较好,沿着梁跨中至梁端方向,CFRP板应变值呈递减趋势。随着荷载值增大,在试验梁跨中位置附近,CFRP板-混凝土界面层出现初始剥离,在界面层剥离区域,CFRP板应变值曲线斜率明显下降,CFRP板应变曲线形状近似S形。随着荷载值增加,在剥离区长度范围内,CFRP板S形应变值沿自由端方向扩展逐渐增大,初始剥离一旦开始,荷载值随之骤然下降;在剥离区域,CFRP板应变值维持恒值不变。研究表明:通过定义SMA摊铺高温作用后CFRP板-混凝土界面单元,引入双重剥离破坏准则,CFRP板-混凝土的界面受剪可通过恒定的裂面剪力传递系数来描述,根据箍筋量配置的不同来描述开裂后混凝土受剪行为,混凝土的开裂形态借助开裂应力描述,受拉软化形态借助软化模量描述,较好地模拟了特殊环境下的CFRP板-混凝土界面的剥离破坏过程。  相似文献   

7.
针对FRP(Fiber Reinforced Polymer/Plastics)筋混凝土界面黏结性能的疲劳寿命问题,开展了CFRP(Carbon Fiber Reinforced Polymer/Plastics)筋材与活性粉末混凝土RPC(Reactive Power Concrete)之间的疲劳黏结性能试验研究。试验详细研究了锚固长度、循环次数、应力水平以及应力幅值等参数对疲劳锚固性能的影响。结果表明,在疲劳荷载的作用下,组装件之间的黏结性能将随循环荷载次数的增加更加趋于稳定;在相同荷载等级下,锚固长度越大,CFRP筋相对于RPC的滑移量越小;在相同荷载等级下,应力幅值越大,CFRP筋相对于RPC的滑移量越大;200万次循环荷载后的CFRP筋抗拉刚度总体上略微降低,但对CFRP筋使用性能影响很小;疲劳后组装件极限承载力有所提高,疲劳荷载使CFRP筋与RPC的黏结处于更加稳定状态。总之,CFRP筋在超高性能混凝土RPC中具有极其优良的疲劳黏结锚固性能。  相似文献   

8.
NSM CFRP加固技术能显著提升混凝土结构的受力性能,已受到桥梁结构加固领域的广泛关注.CFRP与混凝土界面的可靠黏结是充分发挥加固效果的前提,目前针对静载下界面黏结性能的研究相对较多,但关于界面疲劳黏结性能的研究十分有限.为此,开展了疲劳荷载下的单剪拔出试验,通过对黏结界面的疲劳寿命、应力分布、滞回曲线、骨架曲线、...  相似文献   

9.
针对碳纤维板与混凝土界面间结构胶随着时间的推移逐渐老化从而失去黏结力的问题,提出了变黏结预应力碳纤维板加固概念。为了得出变黏结预应力CFRP板加固受弯构件在长期预应力及外界荷载作用下的承载能力及破坏形态,在室内采用无黏结、有黏结和变黏结预应力CFRP板加固技术分别对3根5. 6 m长的钢筋混凝土梁进行了加固设计,并通过加载试验得出了3种状态下试验梁的力学性能及梁体裂缝变化情况。试验结果表明:有黏结预应力CFRP板加固试验梁较无黏结预应力CFRP板加固试验梁,开裂荷载提高了30%,屈服荷载提高了18%,极限荷载提高了20%;变黏结预应力CFRP板加固试验梁较无黏结预应力CFRP板加固试验梁,开裂荷载提高了36%,屈服荷载提高了4%,极限荷载提高了12%;变黏结预应力CFRP板加固技术同时具有无黏结和有黏结加固技术的特点,在加载前期裂缝的产生与有黏结相似,裂缝间距和宽度都较小,在加载后期随着界面结构胶的慢慢老化逐步失去黏结力,试验梁逐渐变为无黏结加固,但由于裂缝间距在前期基本形成,所以加载后期裂缝间距和宽度几乎与有黏结加固类似,较无黏结加固更有利于增强结构的耐久性。建议在加固设计时,应考虑界面结构胶老化对加固效果的影响,尽可能采用耐久性较好的结构胶。  相似文献   

10.
为充分发挥CFRP筋高强轻质的特性,设计了一种新型机械夹持-黏结型复合式锚具,通过改变锚具的黏结长度、黏结介质倾角和黏结介质掺合料,以及是否设置夹片等参数,对6组锚具进行试验研究,测试CFRP筋新型锚具的极限荷载、荷载-滑移曲线、筋材应力和锚具钢套筒应力分布,分析不同参数对新型锚具锚固性能的影响规律,并与未设置夹片的对照组锚具进行比较,最后对3根CFRP筋材的复合式锚具锚固效果进行了试验验证。试验结果表明:新型锚具最终失效形式均表现为筋材破断破坏,且锚具锚固效率系数均满足规范规定的大于0.9的要求;筋材滑移量随着锚具黏结部分长度的增大而减小,合适的锚固长度宜为30~40倍筋材直径;锚具黏结部分倾角的减小会造成顶推力的减小,并造成锚具加载端与自由端滑移量差值增大;黏结介质中适度的掺砂量能够提升锚具的锚固性能,但当掺砂量超过一定程度时,将影响黏结介质本身的胶结性能,建议掺砂量不超过10%;无夹片组失效模式为筋材与胶体黏结滑移失效,锚固效率低,而新型复合式锚具由于顶推力的存在不仅能够减小锚具的整体滑移量,而且能够有效避免锚具在加载端的应力集中现象,极大改善锚具受力性能,提高锚具的锚固效率;该新型复合式锚具对多根CFRP筋材同样具有良好的锚固效果。  相似文献   

11.
钢管混凝土结构在桥梁及建筑工程中得到广泛应用,而钢管和混凝土之间的黏结滑移性不仅对钢管混凝土结构承载力有影响,而且对其稳定性也有较大影响.在研究了钢管与混凝土的黏结理论的基础上,建立了钢管与混凝土之间黏结的本构关系,利用现有结构分析程序采用黏结滑移单元实现了这种本构关系下的模拟和分析,通过示例说明了钢管与混凝土的黏结程度对钢管混凝土拱桥的整体屈曲荷载和安全稳定性系数的影响,研究结果表明,如果以黏结紧密且无相对滑移为设计依据,所得出的拱桥的稳定性结果偏于不安全.  相似文献   

12.
为了掌握空心板铰缝新旧混凝土界面抗剪性能,并为新旧混凝土界面抗剪数值模拟提供参考,提出了铰缝新旧混凝土界面黏结的数值模拟方法以及界面黏结参数的合理取值。首先,结合国内外新旧混凝土抗剪性能试验研究方法,根据空心板铰缝的结构与受力形式,选择推出试验对空心板铰缝新旧混凝土界面破坏机理与抗剪性能进行了研究,推出试验共3组试件,每组试件由左、中、右3块试件组成,按1∶2的比例进行缩尺设计。在总结新旧混凝土界面受力性能的数值模拟方法基础上,提出了数值模拟空心板铰缝推出试验所采用的单元、本构关系和结合面的黏结强度,并对黏结滑移刚度及最终滑移值与峰值应力对应的滑移值的比值进行了分析,最后用推出试验结果验证该数值模拟方法的正确性。研究表明,当铰缝推出试验达到极限强度时,试件将沿铰缝新旧混凝土界面发生脆性破坏,平均抗剪强度为1.1 MPa,以平均剪应力等于0.5 MPa为界限,平均剪应力-滑移曲线近似由直线的弹性阶段和曲线的弹塑性阶段组成;数值模拟过程中铰缝混凝土本构关系采用损伤塑性模型,钢筋本构关系采用理想弹塑性模型,新旧混凝土结合面采用面面接触技术模拟,其中黏结滑移刚度取5 MPa/mm,最终滑移值与峰值应力对应的滑移值之比为2,该方法可获得较好效果。  相似文献   

13.
预应力钢绞线与玄武岩纤维活性粉末混凝土BFRPC(Basalt Fiber Reactive Powder Concrete)之间的黏结性能,对预应力BFRPC桥梁结构的抗弯承载力、裂缝控制、刚度等性能具有显著影响。为了明晰预应力钢绞线与BFRPC之间的黏结-滑移失效过程,通过中心拉拔试验研究了钢绞线直径和黏结长度对预应力钢绞线与BFRPC之间黏结性能的影响。深入探讨了黏结应力-滑移曲线特征、黏结强度及影响因素;建立了BFRPC与预应力钢绞线的分段式双线型线性黏结应力-滑移本构关系模型;综合考虑钢绞线螺旋缠绕特征与旋转滑移失效模式,修正了预应力钢绞线与BFRPC的极限黏结强度计算模型。研究结果表明:对于相同直径的预应力钢绞线,黏结长度每增加100 mm,初始黏结应力下降15%~18%,极限黏结应力下降20%~23%;泊松效应会削弱混凝土和钢绞线之间的握裹力,使得黏结强度与钢绞线直径成反比;钢绞线与BFRPC的黏结-滑移本构关系模型可有效区分拉拔损伤的线性段和滑移段;建立的极限黏结强度修正模型精度良好,误差控制在理论计算控制线两侧±8%以内。  相似文献   

14.
为了实现小跨径钢-混凝土组合梁桥的快速装配化,在传统装配式钢-混凝土组合梁中引入胶结连接件。为了研究小跨径装配式混合连接钢-混凝土组合梁的力学性能及连接可靠性,设计并制作了2榀10 m跨径组合梁足尺试件,并进行了抗弯性能静力试验。通过对组合梁整体及界面的破坏模式观察,及加载过程中试件的承载力、下挠程度、界面滑移与应变值的测定,得到了荷载-挠度曲线、荷载-界面滑移曲线、应变沿截面高度分布曲线,分析了试件的抗弯承载力、刚度、界面滑移性能和平截面假定的符合性。结果表明,装配式混合连接组合梁具有较好的塑性变形能力,其刚度和强度均满足规范要求,具有较高的安全储备;钢梁与混凝土板连接界面的滑移很小,计算时可不考虑连接界面的滑移影响;在3倍工作荷载内跨中和1/4跨的截面应变符合平截面假定。最后,结合钢-混凝土组合桥梁设计规范(GB 50917—2013)与国外相关文献中的公式,给出了该装配式混合连接组合梁的抗弯承载力计算方法,并通过理论计算与试验结果的对比,验证了该计算方法的合理性。  相似文献   

15.
对于暴露在强日照或温差较大环境下的纤维增强聚合物(FRP)加固混凝土桥梁结构,黏结界面中会因温差作用产生一定的温度剪切应力,将减弱界面的后续承载能力。为研究温差作用对FRP加固混凝土界面黏结性能的影响,考虑界面滑移,解析推导了温差作用下弹性-软化-脱黏全过程的界面滑移、黏结应力及FRP应力应变的计算公式,结合试验结果和数值模拟验证了解析式的正确性。分析了环境温差和黏结层数对界面黏结性能的影响,揭示了温差作用下界面黏结剪应力以及FRP正应力的变化规律。解析分析结果表明,温度应力会对界面黏结性能产生不利的影响,实例中界面黏结剪应力最大值能够达到FRP加固混凝土界面剪切强度的51%;粘贴FRP用胶粘剂的玻璃化温度T_g是影响界面黏结性能的关键,当温度未进入胶粘剂玻璃化温度转变区前,界面黏结剪应力呈非线性弹性增长阶段,增加黏结层数可提高界面黏结剪应力;在温度进入胶粘剂玻璃化温度转变区域后,界面滑移呈接近线性分布,界面黏结剪应力分布出现下降段,同时界面黏结强度大幅降低。因此,在实际桥梁工程加固中,须充分考虑环境温差变化对加固结构黏结性能的影响,不可盲目增加FRP黏结层数,且应尽可能采取玻璃化转变温度较高的胶粘剂材料。  相似文献   

16.
为深入研究表层嵌贴碳纤维增强复合材料(CFRP)加固混凝土结构的界面粘结性能,采用试验与理论分析相结合的方法,分析了混凝土强度、粘结长度和槽边距等因素对界面粘结性能的影响,提出了考虑残余摩擦力的三折线粘结滑移本构模型,并将其简化为无上升段的双折线模型,建立了其界面粘结应力微分方程,通过求解方程得出了解析解的一般形式,推导出界面粘结应力、界面滑移量的分布函数,进而得到了界面粘结承载力的计算公式.最后通过试验对双折线粘结滑移模型进行了验证,并与三折线粘结滑移模型进行了对比分析.研究结果表明:由简化的双折线粘结滑移模型得到的界面粘结行为曲线和基于三折线模型的差异不大,并与试验结果吻合较好;提出的简化分析方法能够较好地描述表层嵌贴CFRP与混凝土的粘结行为.  相似文献   

17.
钢-混凝土双面组合连续梁界面滑移试验研究   总被引:3,自引:1,他引:2  
钢-混凝土双面组合连续梁是一种新型的组合结构.钢与混凝土组合的上、下交界面都会产生界面滑移.对3根钢-混凝土双面组合2×2.9 m连续梁模型进行试验研究,测得了受拉混凝土裂缝扩展状况、典型截面沿梁高的应变分布和钢与混凝土界面相对滑移及滑移应变沿梁长的分布.利用有限元分析软件ANSYS建模,给出了组合梁的滑移曲线和滑移应变曲线,与实测结果对比吻合较好.双面组合梁上混凝土板与钢梁间的界面滑移分布与单面组合梁相似,但最大滑移量减少了20%多;负弯矩区的截面刚度提高了27%左右.  相似文献   

18.
为研究有黏结预应力CFRP板加固混凝土梁的疲劳性能,共设计了6根构件,其中疲劳试验构件3根,静载试验构件3根。通过200万次疲劳加载过程中疲劳构件的钢筋、CFRP板和混凝土的应变及荷载-挠度曲线分析,研究了预应力水平、锚固方式对加固混凝土梁的疲劳性能的影响,试验结果表明:有黏结预应力CFRP板加固钢筋混凝土梁的疲劳性能以及疲劳后静力性能良好;预应力水平的提高可以降低试件在疲劳荷载作用下钢筋和梁顶混凝土的应力水平,延缓试件刚度退化;试验采取的两种锚具工作性能良好且差别不明显。通过对试验值进行回归分析,得到了有黏结预应力CFRP加固混凝土梁的疲劳刚度退化规律,并修正了适合有黏结预应力CFRP板加固混凝土构件的疲劳损伤累积计算公式,计算结果表明:该计算公式能够通过疲劳损伤累积规律反算构件的剩余疲劳寿命;有黏结预应力CFRP加固混凝土梁与钢筋混凝土梁的疲劳损伤累积规律存在明显不同,其疲劳损伤累积第1阶段小于疲劳寿命的1%,第1阶段历时更短且第2阶段疲劳损伤累积速率更低;疲劳损伤累积的第1阶段和第2阶段的曲线斜率均为常数并与钢筋最大初始应力有关;提高CFRP板预应力水平能够降低疲劳损伤累积,延长加固构件疲劳寿命。  相似文献   

19.
马虎  陈军  谢开兵  邹杨  周建庭 《公路》2021,66(12):199-207
以嘉华轨道专用桥为工程依托,在总结境内外已有混合梁钢-混结合段理论与试验研究成果的基础之上,采用模型试验的方法对连续刚构桥主梁钢-混结合段的静力性能进行研究.选取实桥钢-混结合段附近共11.5m长梁段,设计相似比为1∶2的结合段缩尺试验模型,进行设计状态循环荷载和极限状态循环荷载两种工况的试验研究,测试结合段关键截面应变、位移以及钢-混界面滑移情况.试验结果表明:在设计荷载循环作用下,混凝土梁段、钢混结合段以及钢梁段均处于线弹性工作阶段,钢混界面相对滑移量处于较低水平,最大值不超过0.07 mm.在极限荷载循环作用下,混凝土梁段底板靠近结合段薄弱区域出现表观裂缝和局部混凝土剥落,靠近承压板的钢梁段在荷载为2500 kN时开始表现出屈服趋势,而混凝土梁段和结合段仍处于线弹性工作阶段;结合段钢混界面相对滑移最大值不超过0.4 mm,钢与混凝土之间协同受力良好,承压板、界面黏结力及摩擦力作用明显;最后对结合段主要传力部件的极限承载力做了理论分析,结果表明结合段受压承载力远高于钢梁侧极限受压承载力,具有较高的安全储备.  相似文献   

20.
为研究大吨位CFRP拉索锚具的锚固性能及极限承载力,实现CFRP拉索的可靠锚固,设计了19根CFRP筋大吨位机械夹持-黏结型复合式锚具,对其进行了静载试验研究和理论分析.试验中对筋材滑移、筋材应变和钢套筒应变分布进行测试;利用ANSYS软件建立大吨位锚具有限元模型,对筋材滑移量、钢套筒环向和纵向应变进行分析,探明了锚固...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号