首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分析了车站采用97型25Hz轨道电路叠加ZPW-2000A两线制电码化时,侧线股道采用叠加发码或预叠加发码的发码时机、断码时机,同时对电码化发码通道电路进行了分析并提出意见。  相似文献   

2.
京广线郑武段50多个车站和孟宝线9个车站的站内高压不对称脉冲轨道电路和电码化,近期都进行了技术改造。轨道电路改为25Hz微电子相敏轨道电路,正线电码化改为预叠加发码电路,侧线改为8信息移频发码(原为UM71点式)。现将改造施工中的要点方案介绍如下。  相似文献   

3.
郑武线近50个车站的站内高压不对称脉冲轨道电路以及正线电码化,近期都陆续进行了改造。轨道电路改为25Hz微电子相敏轨道电路,正线电码化改为预叠加发码电路。现将小李庄和薛店站在施工改造过程中遇到的问题做一总结,以供其他站改造时借鉴。  相似文献   

4.
近年来,ZPW-2000A电码化已经成为站内轨道电路区段电码化的主要制式。一般情况下,站内正线采用预叠加发码方式,即列车占用本区段后,本区段及前方区段均进入发码状态,这种方式有效解决了列车运行过程中因发码电路应变时间延迟造成的瞬间掉码问题。  相似文献   

5.
在某些地方铁路车站信号设备改造工程中,当建设方要求对室外电缆等主要设备利旧使用的情况下,将多信息移频电码化改为ZPW-2000设备时,不宜简单地袭用原电路"叠加发码"模式,否则会引发正线接车区段电码化电路中的设计缺陷问题。从电路中"问题"弊端切入,进行分解剖析;从多种处理方法中筛选出最合理的解决方案,及时避免设计过程中缺陷问题的产生。  相似文献   

6.
在车站闭环电码化电路的改造中,通常的车站是仅有上行和下行自动闭塞正线的车站,设计中一般是将每一条正线设计成可以双方向接发的电码化电路,而这些电路的实现均有定型的电路版本可供参考。但在车站中另有一条半自动闭塞线路与自动闭塞线路共同存在,并同时要进行闭环电码化改造时,此时,半自动闭塞线路又该如何设计呢?下面介绍本人设计过的该类型车站中半自动闭塞线路闭环电码化电路见图1,Ⅰ、Ⅱ股道为自动闭塞正线,Ⅴ股为半自动闭塞正线。  相似文献   

7.
站内电码化电路的常用发码方式有2种:一种是"叠加"发码,即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在,发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息;另一种是"预叠加"发码,"预"就是在列车占用某一区段时,在本区段发码的同时,相邻的下一个区段也发码.这2种发码方式在电路设计上都能够满足列车运行的需要,但有时因设计只考虑到车站的通过进路发码,而忽略了平行进路的发码,使得发码电路的防护区范围过大,造成机车接收不到运行信息的情况,不但给行车安全造成了不利因素,而且严重制约了车站的作业效率.通过分析一起实际运用中电码化电路发生的故障,找出解决问题的方法,保证机车连续接收运行信息,确保行车安全.  相似文献   

8.
在铁路信号技术发展中,普速线和部分客专线车站采用正线及股道电码化制式,其侧线道岔区段不发码。近些年来,随着运输要求的不断提高,动车组快速普及,当动车组运行于不发码区段时,在一定外部条件影响下,信号车载和地面系统存在适配性问题,易引起动车组制动,影响运输效率。结合信号车载系统规范和设备工作原理,分析动车组电务车载设备制动的原因,从地面信号系统角度提出解决方案,从而提高动车组电务车载设备与电码化的适配性。  相似文献   

9.
对信阳枢纽ZPW-2000A车站正线电码化电路设计中遇到的问题,从电路原理上进行了分析介绍,并提出了对应的解决方案,对ZPW-2000A车站正线电码化电路的设计、施工、开通调试及故障分析有很好的参考性.  相似文献   

10.
针对带股道分割的车站,当机车反向进入股道时,存在机车越过分割绝缘后收不到码的问题,从电路原理上进行了分析,并提出了对应的解决方案,对ZPW-2000A车站正线电码化电路的设计、施工及故障分析处理有很好的参考价值。  相似文献   

11.
简述单线区段到发线车站电码化的设置原则,对到发线叠加ZPW-2000系列电码化设计的2种主要类型进行分析,对电路存在的问题提出改进意见,进行小结。  相似文献   

12.
为保障行车安全,防止列车侧面冲突和冒进信号,使列车通过车站时机车信号不中断,北京局从1986年开始相继在有条件的车站股道及道岔区段轨道电路,安装了微电子交流计数电码化设备,站内正线和侧线股道全部实现了电码化,为行车安全提供了技术保证.  相似文献   

13.
泰安电务段内京沪线上12个6502电气集中车站的正线移频化电路,目前有2种类型。一种是新开通的6502车站采用的3016股道电码化电路(简称3016电路);车一种是原0030站内正线移频化电路与3016电路相结合的电路(简称结合电路)。在实际运用中偶尔出现漏码、错码问题,事后检查测试往往一切正常。对此,我们将发现监测记录文件进行对比分析,查出故障的原因,并提出了改进方案。  相似文献   

14.
朔黄线小站侧线采用微电子交流计数发码,控制台上设股道发码灯,当股道发码时,股道对应的发码灯亮红灯;机械室设电码盒、发码盒及发码变压器,三者构成编码电路;对应每个股道设2个发码继电器,当条件具备,发码继电器吸起时,接通编码电路进行发码。现以朔黄线段庄站为例,介绍侧线发码电路存在的问题及改进方法。[第一段]  相似文献   

15.
车站电码化技术是保证铁路运输安全的一项重要技术。该书从科研和工程设计角度,对电码化的必要性、关键技术、电路原理和主要设计原则等方面进行了详细阐述。其中叠加预发码部分除包括非电气化和电气化区段480轨道电路叠加8、18、多信息移频,及ZPW-2000(UM)系列移频预发码技术,非电化和电气化区段25Hz相敏轨道电路叠加ZPW-2000(UM)系列移频预发码技术外,  相似文献   

16.
单线半自动闭塞车站,接近区段微电子交流计数发码电路与站内微电子交流计数发码电路是2个相对独立、分散的电路。接近区段发码电路设备安装在室外继电器箱,站内电码化电路设备安装在机械室内。随着列车运行速度的不断提高,对地面发码设备的可靠性、稳定性及应变时间的要求越来越高。接近区段和站内电码化电路,在运用及现场维护中暴露出许多弊端,迫切需要对申。路讲行曲讲.  相似文献   

17.
国内普速线站内和区间采用不同制式的轨道电路,为了保证机车信号的连续性,站内正线和股道采用电码化设备发码。根据现行铁路规范及技术标准分析京沪线济南南站既有上行经基本进路接车至8G特殊电码化电路中存在的问题,提出相应解决方案,通过电路改进保证机车信号显示与地面信号显示一致,确保行车安全,为今后类似项目的工程设计提供参考。  相似文献   

18.
在我国非电化铁路线上,车站电气集中大多采用交流连续式轨道电路(俗称480轨道电路),由于交流连续式轨道电路的接收设备是内部带有全波整流的JZXC-480安全型继电器,它不仅可由直流励磁,而且任何频率的交流也能使它励磁。故交流连续式轨道电路实施电码化时,在考虑信号“故障一安全”的前提下,一般采用非叠加方式(切换方式)的电码化。“切换方式”的电码化又分为“固定切换”和“脉动切换”两种发码方式,目前交流连续式轨道电路移频电码化一般采用“脉动切换”发码方式:即铁道部标准图册(通号3016)电路。  相似文献   

19.
站内移频主要应用于铁路车站内,它能保证站内正线电码化轨道电路连续不断地向机车发送所需的电码化信息,是机车信号系统的地面发送设备。近年来由我国自主研发的ZPW-2000移频技术因其卓越性能在铁路干线上得到了广泛应用,MPB-2000G型半自动闭塞区段车站电码化系统,是将ZPW-2000G制式推广应用在既有单线半自动闭塞车站的一种尝试,提高了传输性能和可靠性。针对站内电码化预发码技术的技术改进与调试,就25 Hz相敏轨道电路预叠加ZPW-2000G的设备构成、施工及调试和常见的故障处理进行了阐述。  相似文献   

20.
结合南京电务段新上的ZPW2000A站内电码化预发码设备,以非电化区段25Hz相敏轨道电路预叠加ZPW-2000A电码化为例,谈谈有关站内正线电码化机车信号掉码原因及处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号