首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Distribution of drifting seaweeds in eastern East China Sea   总被引:3,自引:0,他引:3  
In offshore waters with relatively low primary production, drifting seaweeds composed of Sargassum species form an identical ecosystem such as an oasis in desert. Commercially important pelagic fishes such as jack mackerel (Trachurus japonicus) and yellow tail (Seriola quinqueradiata) spawn in East China Sea pass their juvenile period accompanying drifting seaweeds. Therefore drifting seaweeds are very important not only in offshore ecosystem but also fishery resources. However the distribution of drifting seaweeds in East China Sea has scarcely known. Then we conducted two research cruises of R/V Hakuho–Maru in May 2002 and in March 2004. During the cruises, drifting seaweeds were visually observed from the bridge and sampled with a towing net. The observation revealed that the drifting seaweeds were distributed along the front between the Kuroshio Current and coastal waters and mainly composed of one seaweed species, Sargassum horneri (Turner) C. Agardh from spring to early summer. There are no reports on geographical distribution of this species in the coasts south of southern Kyushu Island in Japan. Kuroshio Current flows northeastward there. Buoys with GPS attached to drifting seaweeds released off Zhejiang Province, China, in March 2005 to track their transport. Their positions monitored by ORBCOM satellite showed that they were transported to the area in East China Sea, where the drifting seaweeds were observed during the cruises, in 2 months. These facts suggest that S. horneri detached from Chinese coast in March or months earlier than March could be transported to fringe area of continental shelf and waters influenced by Kuroshio Current from March to May. Therefore the Sargassum forests, especially S. horneri, along the Chinese coast play a very important role in the ecosystem of the East China Sea as a source of drifting seaweeds.  相似文献   

2.
The East Sea/Sea of Japan is a moderately productive sea that supports a wealth of living marine resources. Of the East Sea subregions, the southwest has the highest productivity. Various authors have proposed coastal upwelling, the Tsushima Current, the Changjiang Dilute Water, eddies, or discharge from the Nagdong River as potential sources of additional nutrients. In this paper, we propose, using satellite data from 1998 to 2006, that the biological productivity of the southwestern region is enhanced mainly by wind-driven upwelling along the Korean coast. Firstly, the climatology of seasonal patterns suggests that the enhanced chlorophyll a along the Korean coast is of local origin. Secondly, coastal upwelling is frequent in all seasons except winter. For example, along the coast of the Ulgi region, enhanced chlorophyll a due to coastal upwelling was observed for 25–92% of the time between Jun and Sep in the period 1998–2006. Thirdly, the advection of upwelled water through various pathways to the deeper basin was observed. Fourthly, there appeared to be a strong correlation between the interannual chlorophyll a variations of the coastal upwelling regions and the Ulleung Basin. The chlorophyll a patterns of both regions were closely related to the wind pattern in the upwelling regions, but not to that in the Ulleung Basin. Finally, changes in advection pathways also appeared to affect the productivity of the Ulleung Basin. Since 2004, there has been a shift in the pathways of upwelled water, and consequent increases in chlorophyll a in the Ulleung Basin were observed. This last observation requires further investigation.  相似文献   

3.
The East Sea (Sea of Japan) is a unique marginal sea because it exhibits features of oceanic dynamics of much larger ocean basins. This semi-enclosed basin may be considered as a model or microcosm for understanding of how biological processes and distributions in pelagic ecosystem are interacting with physical processes in highly dynamic ocean regions. This overview summarizes the recent progresses concerning spatial and temporal variability of pelagic ecosystem components form an interdisciplinary point of view. Spatial characteristics of physical environments and biogeography in the region are distinguished mainly by the subpolar front. It was also found that long-term changes in biomass and community structure as well as those in the physical and biological environments are associated with climate variability in the region. We conclude by identifying main needs for the information and researches, particularly regular and long-term sampling, and permanent monitoring if possible.  相似文献   

4.
Recent observations of hydrography, currents and volume transports in the straits of the East/Japan Sea are reviewed. It is newly found that bottom cold water in the Korea/Tsushima Strait originating from the northern region of the East/Japan Sea appears not only in summer and autumn but also in winter. Intensive observations in the Korea/Tsushima Strait revealed two distinct cores of northeastward currents in the upper layer of the western and eastern channels. Mean volume transport through the Korea/Tsushima Strait is calculated as 2.5 ± 0.5 Sv from four-year direct and indirect measurements. As continuous monitoring has started in the Tsugaru and Soya Straits, understanding of temporal variability of currents and volume transports through the straits is in progress. For the first time, simultaneous time series of volume transports are available in the Korea/Tsushima and Tsugaru Straits during the winter of 1999–2000. Ouflow through the Tsugaru Strait accounts for about 70% of inflow through the Korea/Tsushima Strait for this period.  相似文献   

5.
A Pacific basin-wide physical–biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS–CoSiNE model is forced with the daily air–sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES.The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m− 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.  相似文献   

6.
Bioenergetics model is applied to Japanese common squid, Todarodes pacificus. The temporal change of wet weight of common squid, which migrates in the Sea of Japan, is simulated. The time dependent horizontal distribution of prey is calculated a priori by 3-D coupled physical–biological model. The biological model NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) is used to simulate the lower-trophic ecosystem including three kinds of zooplankton biomass two of which is used as prey of common squid. A bioenergetics model reproduced appropriate growth curve of common squid, migrating in the North Pacific and the Sea of Japan. The results show that the wet weight of common squid in the northern Sea of Japan is heavier than that migrating in the central Sea of Japan, because prey density of the northern Sea of Japan is higher than that of the central Sea of Japan. We also investigate the wet weight anomaly for a global warming scenario. In this case, wet weight of common squid decreases because water temperature exceeds the optimum temperature for common squid. This result indicates that migration route and spawning area of common squid might change with global warming.  相似文献   

7.
Evaluation of the behaviors of fish that belong to higher levels of the food web is important from the viewpoint of resource management and other environmental issues. Especially for adult fish that can swim against the surrounding currents, it is quite important to consider migration effects when modeling fish behavior. In the present study, a model of fish behavior is developed that considers the migration effect by incorporating a preference for various environmental factors. The species to be modeled, Pagrus major, was chosen because its high value as a food makes it representative of an exploited fish species. In the developed model, the direction of the fish movement is determined by the strength of preference for environmental factors of water temperature, salinity, dissolved oxygen, and prey density. The model is coupled with a hydrodynamic model and a lower-trophic ecosystem model, which predict the physical environment and water quality of the target area. Numerical simulations are carried out to reproduce the spatial distribution and seasonal variations of the ecosystem in the East Seto Inland Sea. Proper parameters for fish behavior were obtained through the processes of model tuning. As a result of the simulations, we clarified that the environmental conditions have a sizeable influence on the migration and distribution of Pagrus major. The developed model is also able to reproduce the fish biomass variation in time and space, which will provide more detailed information for resource management of the fish.  相似文献   

8.
A total of 2759 stomachs collected from a bottom trawl survey carried out by R/V “Bei Dou” in the Yellow Sea between 32°00 and 36°30N in autumn 2000 and spring 2001 were examined. The trophic levels (TL) of eight dominant fish species were calculated based on stomach contents, and trophic levels of 17 dominant species in the Yellow Sea and the Bohai Sea reported in later 1950s and mid-1980s were estimated so as to be comparable. The results indicated that the mean trophic level at high trophic levels declined from 4.06 in 1959–1960 to 3.41 in 1998–1999, or 0.16–0.19·decade− 1 (mean 0.17·decade− 1) in the Bohai Sea, and from 3.61 in 1985–1986 to 3.40 in 2000–2001, or 0.14·decade− 1 in the Yellow Sea; all higher than global trend. The dominant species composition in the Yellow Sea and the Bohai Sea changed, with the percentage of planktivorous species increases and piscivorous or omnivorous species decreases, and this was one of the main reasons for the decline in mean trophic level at high tropic levels. Another main reason was intraspecific changes in TL. Similarly, many factors caused decline of trophic levels in the dominant fish species in the Yellow Sea and the Bohai Sea. Firstly, TL of the same prey got lower, and anchovy (Engraulis japonicus) as prey was most representative. Secondly, TLs of diet composition getting lower resulted in not only decline of trophic levels but also changed feeding habits of some species, such as spotted velvetfish (Erisphex pottii) and Trichiurus muticus in the Yellow Sea. Thirdly, species size getting smaller also resulted in not only decline of trophic levels but also changed feeding habits of some species, such as Bambay duck (Harpodon nehereus) and largehead hairtail (Trichiurus haumela). Furthermore, fishing pressure and climate change may be interfering to cause fishing down the food web in the China coastal ocean.  相似文献   

9.
Marine ecosystems of the East China Sea are rich in biodiversity, with 12,933 species of which approximately 47.7% are endemic. As anthropogenic impacts are intensifying, fishery resources and biodiversity in the East China Sea are under threat from overfishing, habitat loss, pollution, and biological invasions. Marine protected areas (MPAs) and other spatial management measures are believed useful tools to protect and restore biological resources. Seventeen nature reserves, seven special marine reserves, and three fishery resource conservation zones covering a combined area of 102,156 km2 have so far been established in the Chinese East China Sea in order to protect fishery resources, biodiversity, and marine landscapes. This article provides a review and inventory of MPAs in the Chinese East China Sea as implemented by the People's Republic of China.  相似文献   

10.
In this study, we present the development and application of a new ecosystem model coupled with a hydrodynamic model to describe the important physical, chemical and biological processes of an ecosystem in the marine environment, the Ariake Sea in the west coast of Kyushu, Japan. The model was calibrated and validated using in-situ field measurements from various monitoring stations in the sea. The presented results covered the period from January 1991 to December 2000. The results showed that chlorophyll-a, nutrients and dissolved oxygen levels varied seasonally in response to weather and boundary condition. Through this study, the model was shown to be able to handle the flooding and drying processes that usually exist and play an essential role over the estuarine-tidal flats of the sea.  相似文献   

11.
The warm oceanic current Kuroshio and the continental shelf water of the East China Sea meet in the western North Pacific, north of Taiwan and form an upwelling when they converge. The intrusion of the Kuroshio westward over the East China Sea shelf thus results in complicated exchanges of waters between these two water masses. We studied the copepods in the plankton collection taken from an east–west transect crossing these waters in April 1995 when the intrusion of the Kuroshio over the East China Sea shelf was beginning to retreat. The taxonomy of copepods was carefully treated and erroneous species records reported in the literature were guarded against. We evaluated the copepod diversity, the association of copepod species, and the association of stations in these water masses.  相似文献   

12.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

13.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

14.
Marine systems models are becoming increasingly complex and sophisticated, but far too little attention has been paid to model errors and the extent to which model outputs actually relate to ecosystem processes. Here we describe the application of summary error statistics to a complex 3D model (POLCOMS-ERSEM) run for the period 1988–1989 in the southern North Sea utilising information from the North Sea Project, which collected a wealth of observational data. We demonstrate that to understand model data misfit and the mechanisms creating errors, we need to use a hierarchy of techniques, including simple correlations, model bias, model efficiency, binary discriminator analysis and the distribution of model errors to assess model errors spatially and temporally. We also demonstrate that a linear cost function is an inappropriate measure of misfit. This analysis indicates that the model has some skill for all variables analysed. A summary plot of model performance indicates that model performance deteriorates as we move through the ecosystem from the physics, to the nutrients and plankton.  相似文献   

15.
During 2005–2008 species composition, abundance patterns, natural mortality rates and salinity effects on zooplankton were studied in the Bosphorus regions of the Black and Marmara Seas. The tendencies to diminish for abundance and biomass of the Black Sea originated zooplankton species and to increase for the proportion of their carcasses in the direction from the Black Sea toward the Marmara Sea were found. The mortality in the Black Sea species increased with depth in the Marmara Sea. The contribution of organic matter of carcasses of the Black Sea originated organisms to bacterial processes in the deep strata of the Marmara Sea was estimated. Different salinity and temperature regimes restrict mutual penetration of the species in these seas.  相似文献   

16.
Reanalyzed products from a MOM3-based East Sea Regional Ocean Model with a 3-dimentional variational data assimilation module (DA-ESROM), have been compared with the observed hydrographic and current datasets in the Ulleung Basin (UB) of the East/Japan Sea (EJS). Satellite-borne sea surface temperature and sea surface height data, and in-situ temperature profiles have been assimilated into the DA-ESROM. The performance of the DA-ESROM appears to be efficient enough to be used in an operational ocean forecast system.Comparing with the results from Mitchell et al. [Mitchell, D. A., Watts, D. R., Wimbush, M., Teague, W.J., Tracey, K. L., Book, J. W., Chang, K.-I., Suk, M.-S., Yoon, J.-H., 2005a. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. II, 52, 1617-1638.], the DA-ESROM fairly well simulates the high variability of the Ulleung Warm Eddy and Dok Cold Eddy as well as the branching of the Tsushima Warm Current in the UB. The overall root-mean-square error between 100 m temperature field reproduced by the DA-ESROM and the observed 100-dbar temperature field is 2.1 °C, and the spatially averaged grid-to-grid correlation between the two temperature fields is high with a mean value of 0.79 for the inter-comparison period.The DA-ESROM reproduces the development of strong southward North Korean Cold Current (NKCC) in summer consistent with the observational results, which is thought to be an improvement of the previous numerical models in the EJS. The reanalyzed products show that the NKCC is about 35 km wide, and flows southward along the Korean coast from spring to summer with maximum monthly mean volume transport of about 0.8 Sv in August–September.  相似文献   

17.
The ecological conversion efficiencies in twelve species of fish in the Yellow Sea Ecosystem, i.e., anchovy (Engraulis japonicus), rednose anchovy (Thrissa kammalensis), chub mackerel (Scomber japonicus), halfbeak (Hyporhamphus sajori), gizzard shad (Konosirus punctatus), sand lance (Ammodytes personatus), red seabream (Pagrus major), black porgy (Acanthopagrus schlegeli), black rockfish (Sebastes schlegeli), finespot goby (Chaeturichthys stigmatias), tiger puffer (Takifugu rubripes), and fat greenling (Hexagrammos otakii), were estimated through experiments conducted either in situ or in a laboratory. The ecological conversion efficiencies were significantly different among these species. As indicated, the food conversion efficiencies and the energy conversion efficiencies varied from 12.9% to 42.1% and from 12.7% to 43.0%, respectively. Water temperature and ration level are the main factors influencing the ecological conversion efficiencies of marine fish. The higher conversion efficiency of a given species in a natural ecosystem is acquired only under the moderate environment conditions. A negative relationship between ecological conversion efficiency and trophic level among ten species was observed. Such a relationship indicates that the ecological efficiency in the upper trophic levels would increase after fishing down marine food web in the Yellow Sea ecosystem.  相似文献   

18.
An exploited ecosystem from the continental shelf and upper slope of the Northwestern Mediterranean Sea was described by means of an Ecopath mass-balance model with the aim of characterising its functioning and structure and describing the ecosystem impacts of fishing. This application included some complexities added to the general modelling methodology due to the high biodiversity of the Mediterranean Sea and the multispecific nature of the fishery, and to the difficulties of working with fishing data which are usually irregularly or imprecisely collected. The model comprised 40 functional groups including primary producers, the main species of benthic, demersal and pelagic invertebrates, fishes and non-fish vertebrates and three detritus groups. In addition, trawling, purse seine, longline and troll bait fishing fleets were included.Results showed that the functional groups were organized into four trophic levels with the highest levels corresponding to anglerfish, dolphins, large pelagic fishes and adult hake. The system was dominated by the pelagic fraction, where sardine and anchovy prevailed in terms of fish biomasses and catches. Detritus and detritivorous groups also played key roles in the ecosystem and important coupled pelagic-demersal interactions were described. Considering Odum's theory of ecosystem development, the ecosystem was placed on an intermediate-low developmental stage due, at least partially, to the impact of fishing activity. This highlighted the high intensity of fishing in the ecosystem, in accordance with the general assessment of western Mediterranean marine resources, and fishing fleets were ranked as top predators of the system. The low trophic level of the catch was in line with the long history of exploitation in the area. However, the steady decline of pelagic landings between 1994 and 2003, coupled with a decrease of the pelagic biomass within the system, underlined the low resistance of the system in front of perturbations. This decline was reproduced under Ecosim dynamic simulations combining different scenarios of moderate increase of fishing effort and an environmental forcing affecting the availability of preys to small and medium-sized pelagic fishes under wasp-waist flow control.  相似文献   

19.
The Oder River estuary is a large and complex system composed of lagoons, lakes and river branches in which numerous biogeochemical processes lead to modification of loads of dissolved/suspended material brought in with the riverine waters. Budget calculations show that on an annual basis, 71–88% of total nitrogen, 73–89% of total phosphorus and 72–101% of BOD5 inflowing to the estuary are exported to the Baltic Sea. Among the inorganic nutrient species, nitrates exhibit the highest net transformation rate into organically bound forms (over 60%). The transformation could have been equally high or even higher in the case of ammonia and phosphates but these processes may have been compensated by intensive mineralization. The mechanisms responsible for the nutrient transformation patterns, as well as their net effect on the annual loads delivered into the Baltic Sea, are discussed in the paper. Phosphorus seemed to play a limiting role in phytoplankton production in the estuary in spring, while nitrogen did the same in summer.  相似文献   

20.
A nitrogen-based, pelagic ecosystem model has been coupled with an eddy-permitting ocean general circulation model of the Arabian Sea, and the results are compared with observations. The seasonal variability simulated by the model is in good agreement with observations: during the southwest monsoon season, phytoplankton increases in the western Arabian Sea due to upwelling along the coast; during the northeast monsoon season, phytoplankton abundance is large in the northern Arabian Sea because of the enhanced nitrate entrained by relatively deep vertical mixing. Two major differences are, however, found in the basin-wide comparison between model results and observations: an unrealistic nitrate maximum in the subsurface layer of the northern Arabian Sea and too low primary production in oligotrophic regimes. The former may be attributed to the lack of denitrification in the model. Possible causes for the latter include the present model's underestimation of fast nutrient recycling, the neglect of carbon fixation decoupled from nitrogen uptake and of nitrogen fixation, and inadequate nitrate entrainment by mixed layer deepening. The rate at which simulated nitrate increases in the northern Arabian Sea is 11–24 TgN/year, and should correspond to the denitrification rate integrated over the northern Arabian Sea assuming that the loss of nitrogen through denitrification is balanced by advective input. The model does not reproduce the observed phytoplankton bloom in the late southwest monsoon season. Possible causes are that the mixed layer may be too shallow in summer and that the horizontal transport of nitrate from the coast of Oman may be too weak. Sensitivity experiments demonstrate a strong dependence of the simulated primary productivity on the vertical mixing scheme and on the inclusion of a fast recycling loop in the ecosystem model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号