首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Cellular automata models have formed the theory for the development of several transportation models to simulate various types of elements such as vehicles, pedestrians or even railway traffic. Furthermore, they have been applied to simulate several scenarios from very simple (freeway traffic) to rather complicated ones (lane reduction and signal optimisation). However, the properties of the model when used to simulate a signal controlled traffic stream have not been dealt with in great detail. This paper discusses several issues that arise while using the model for the simulation of traffic at signalised intersections. It also investigates the relationships between the randomisation parameter of the model, the model dynamics and the estimated saturation flow. For the deterministic version of the model, the formulas describing traffic quantities at the intersection are derived and are dependent on the desired speed – a parameter of the model. For the stochastic version, one can adopt several different approaches for the application of the randomisation rule, depending on the simulation needs.  相似文献   

2.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

3.
The Simple Platoon Advancement (SPA) Model describes a conceptual system whose principal objective is to increase the throughput of vehicles at signalised intersections. This is achieved through a novel combination of Intelligent Transport System (ITS) technologies including Automatic Cruise Control, Lane Departure Avoidance, and Collision Avoidance. These are combined in SPA so that vehicles are progressed through signalised intersections under automated control. All of the vehicles in a stationary queue are moved instantly at the start‐of‐green as a closely‐spaced platoon. Dispersion occurs after all vehicles are in motion. Throughput of the SPA model is determined analytically and comparisons are made between the SPA model and a valid representation of current road traffic behaviour. These comparisons show that theoretically a SPA system can progress nearly twice as many vehicles past the stopline as can be seen in today's road network. Other benefits of a conceptual SPA system are improved safety and a reduction in delay per vehicle.  相似文献   

4.
Air pollution at many types of intersections and other roadside “hot spots” is not accurately characterized by state-of-the-practice models. In this study, data were collected on traffic flows, second-by-second CO and NO2 ambient concentrations in Shanghai, China. The sampled data were compared with CAL3QHC modeling results. We found that: (1) intersection hot spot emission concentrations were explained primarily by queuing activities of motor vehicles; (2) air quality concentrations are difficult to predict because of complex dispersion processes near high-rise buildings; and (3) screening models such as CAL3QHC are prone to large errors in dense cities with mixed traffic and high-rising buildings. Suggestions are made for improved models relevant to dense developing cities.  相似文献   

5.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.  相似文献   

8.
A variety of sensor technologies, such as loop detectors, traffic cameras, and radar have been developed for real-time traffic monitoring at intersections most of which are limited to providing link traffic information with few being capable of detecting turning movements. Accurate real-time information on turning movement counts at signalized intersections is a critical requirement for applications such as adaptive traffic signal control. Several attempts have been made in the past to develop algorithms for inferring turning movements at intersections from entry and exit counts; however, the estimation quality of these algorithms varies considerably. This paper introduces a method to improve accuracy and robustness of turning movement estimation at signalized intersections. The new algorithm makes use of signal phase status to minimize the underlying estimation ambiguity. A case study was conducted based on turning movement data obtained from a four-leg signalized intersection to evaluate the performance of the proposed method and compare it with two other existing well-known estimation methods. The results show that the algorithm is accurate, robust and fairly straightforward for real world implementation.  相似文献   

9.
Previous research suggests that the passenger car unit (pcu) value of motorcycles (hereafter referred to as motorbikes to avoid confusion with signal cycles) varies depending on the time during the signal cycle that the motorbike crosses the stopline. Based on data from Bangkok, (May A.D., Montgomery F.O., 1986. Working paper 222, Institute for Transport Studies, University of Leeds) reported that motorbikes crossing the stopline in the first 6 s of effective green time had a pcu value of 0 and those crossing the stopline later in the cycle had a pcu value that varied from 0.53 to 0.65, depending on the lateral positioning of the motorbike and its eventual turning movement. In order to take into account this dual motorbike pcu factor, it is essential to estimate accurately the number of QFLIERS2. A model has been derived that describes motorbike behaviour at signalised intersections. An amended first order macroscopic model was used to represent motorbike behaviour and multiple regression analysis explained inaccuracies resulting from this technique. The model was tested against video data of motorbikes collected at intersections in Indonesia, Malaysia and Thailand, where the proportion of motorbikes is high (up to 70%), and predicted the number of QFLIERS per cycle with a high degree of accuracy. The factors shown to be important in predicting the number of QFLIERS were both temporal (inputs for the amended first order macroscopic model) and spatial (average lane width, number of lanes and number of buses and trucks per lane per cycle). The importance of the storage space at the front of the queue was noted and included within the model.  相似文献   

10.
Connected vehicle technology can be beneficial for traffic operations at intersections. The information provided by cars equipped with this technology can be used to design a more efficient signal control strategy. Moreover, it can be possible to control the trajectory of automated vehicles with a centralized controller. This paper builds on a previous signal control algorithm developed for connected vehicles in a simple, single intersection. It improves the previous work by (1) integrating three different stages of technology development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) increasing the computational efficiency with a branch and bound solution method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman filter to reduce the impact of measurement errors on the final solution. Three categories of vehicles are considered in this paper to represent different stages of this technology: conventional vehicles, connected but non-automated vehicles (connected vehicles), and automated vehicles. The proposed algorithm finds the optimal departure sequence to minimize the total delay based on position information. Within each departure sequence, the algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The optimal departure sequence and trajectories are obtained by a branch and bound method, which shows the potential of generalizing this algorithm to a complex intersection.Simulations are conducted for different total flows, demand ratios and penetration rates of each technology stage (i.e. proportion of each category of vehicles). This algorithm is compared to an actuated signal control algorithm to evaluate its performance. The simulation results show an evident decrease in the total number of stops and delay when using the connected vehicle algorithm for the tested scenarios with information level of as low as 50%. Robustness of this algorithm to different input parameters and measurement noises are also evaluated. Results show that the algorithm is more sensitive to the arrival pattern in high flow scenarios. Results also show that the algorithm works well with the measurement noises. Finally, the results are used to develop a heuristic to switch between the different control algorithms, according to the total demand and penetration rate of each technology.  相似文献   

11.
The safety of signalized intersections has often been evaluated at an aggregate level relating collisions to annual traffic volume and the geometric characteristics of the intersection. However, for many safety issues, it is essential to understand how changes in traffic parameters and signal control affect safety at the signal cycle level. This paper develops conflict-based safety performance functions (SPFs) for signalized intersections at the signal cycle level. Traffic video-data was recorded for six signalized intersections located in two cities in Canada. A video analysis procedure is proposed to collect rear-end conflicts and various traffic variables at each signal cycle from the recorded videos. The traffic variables include: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The SPFs are developed using the generalized linear models (GLM) approach. The results show that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of conflict occurrence beyond what can be expected from the traffic volume only. Furthermore, space-time conflict heat maps are developed to investigate the distribution of the traffic conflicts. The heat maps illustrate graphically the association between rear-end conflicts and various traffic parameters. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The overall goal is to use the developed models for the real-time optimization of signalized intersection safety by changing the signal design.  相似文献   

12.
This paper reports the analysis and comparisons of discharge headways at 26 sites in Hong Kong. Previous studies here established good understanding of the average discharge headway under various conditions but very few studies dealt with discharge headway of individual vehicles which is a vital component in the traffic simulation at signalized intersections. This study that looked into the discharge headway of individual vehicles found that the discharge headway at different queue position follows the Type I Extreme Value Distribution. A method of estimating site‐specific parameters for this distribution has also been proposed.  相似文献   

13.
For uninterrupted traffic flow, it is well-known that the fundamental diagram (FD) describes the relationship between traffic flow and density under steady state. For interrupted traffic flow on a signalized road, it has been recognized that the arterial fundamental diagram (AFD) is significantly affected by signal operations. But little research up to date has discussed in detail how signal operations impact the AFD. In this paper, based upon empirical observations from high-resolution event-based traffic signal data collected from a major arterial in the Twin Cities area, we study the impacts of g/C ratio, signal coordination, and turning movements on the cycle-based AFD, which describes the relationship between traffic flow and occupancy in a signal cycle. By microscopically investigating individual vehicle trajectories from event-based data, we demonstrate that not only g/C ratio constrains the capacity of a signalized approach, poor signal coordination and turning movements from upstream intersections also have significant impact on the capacity. We show that an arterial link may not be congested even with high occupancy values. Such high values could result from queue build-up during red light that occupies the detector, i.e. the Queue-Over-Detector (QOD) phenomenon discussed in this paper. More importantly, by removing the impact of QOD, a stable form of AFD is revealed, and one can use that to identify three different regimes including under-saturation, saturation, and over-saturation with queue spillovers. We believe the stable form of AFD is of great importance for traffic signal control because of its ability to identify traffic states on a signal link.  相似文献   

14.
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

15.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

16.
The objective of this research is to identify the factors differentiating between single heavy vehicle collisions at intersections and midblocks by using a binary logit model. Our results show that single vehicle crashes involving heavy vehicle at intersections are more likely to occur on main roads and highways, whereas crashes at midblocks are more likely to occur on divided two‐way roads, roads with special facilities or features (e.g. bridge) and roads with a higher percentage of heavy vehicle traffic. Intersection crashes are also more likely to involve vehicles that are turning left or right, resulting in angle crashes and vehicle overturn, whereas midblock crashes are more likely to involve vehicles on higher posted speed roads. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Abstract

Microscopic traffic simulators are the most advanced tools for representing the movement of vehicles on a transport network. However, the energy spent in traffic microsimulation has been mainly oriented to cars. Little interest has been devoted to more sophisticated models for simulating transit systems. Commercial software has some options to incorporate the operation of transit vehicles, but they are insufficient to properly consider a real public transport system. This paper develops an Application Programming Interface, called MIcroscopic Simulation of TRANSIT (MISTRANSIT), using the commercial microsimulator PARAllel MICroscopic Simulation. MISTRANSIT makes advances in three ways: public transport vehicles can have new characteristics; passengers are incorporated and traced as individual objects; and specific models represent the interaction between passengers and vehicles at stops. This paper presents the modelling approach as well as various experiments to illustrate the feasibility of MISTRANSIT for studying policy operations of transit systems.  相似文献   

19.
The turning behavior is one of the most challenging driving maneuvers under non-protected phase at mixed-flow intersections. Currently, one-dimensional simulation models focus on car-following and gap-acceptance behaviors in pre-defined lanes with few lane-changing behaviors, and they cannot model the lateral and longitudinal behaviors simultaneously, which has limitation in representing the realistic turning behavior. This paper proposes a three-layered “plan-decision-action” (PDA) framework to obtain acceleration and angular velocity in the turning process. The plan layer firstly calculates the two-dimensional optimal path and dynamically adjusts the trajectories according to interacting objects. The decision layer then uses the decision tree method to select a suitable behavior in three alternatives: car-following, turning and yielding. Finally, in the action layer, a set of corresponding operational models specify the decided behavior into control parameters. The proposed model is tested by reproducing 210 trajectories of left-turn vehicles at a two-phase mixed-flow intersection in Shanghai. As a result, the simulation reproduces the variation of trajectories, while the coverage rate of the trajectories is 88.8%. Meanwhile, both the travel time and post-encroachment time of simulation and empirical turning vehicles are similar and do not show statistically significant difference.  相似文献   

20.
U-turns are treated as left-turns in the current procedures for estimating saturation flow rates at signalized intersections. While U-turning vehicles are usually mixed with left-turning vehicles in inside or left-turn lanes and conflict with opposing through traffic as left-turning vehicles, the vehicle operating characteristics are different. The objective of this paper is to investigate the effects of U-turns on the traffic flow in left-turn lanes. Field data of 600 headways of left-turning passenger cars and 160 headways of U-turning passenger cars are recorded. The average headways of U-turning passenger cars are found to be significantly larger than those of left-turning passenger cars. The effects of U-turning vehicles depend upon the percent of U-turning vehicles in the left-turn lane, as well as the order of formation in the traffic stream. Adjustment factors for varying percents of U-turning vehicles in left-turn lanes are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号