首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hazardous materials routing and scheduling decisions involve the determination of the minimum cost and/or risk routes for servicing the demand of a given set of customers. This paper addresses the bicriterion routing and scheduling problem arising in hazardous materials distribution planning. Under the assumption that the cost and risk attributes of each arc of the underlying transportation network are time-dependent, the proposed routing and scheduling problem pertains to the determination of the non-dominated time-dependent paths for servicing a given and fixed sequence of customers (intermediate stops) within specified time windows. Due to the heavy computational burden for solving this bicriterion problem, an alternative algorithm is proposed that determines the k-shortest time-dependent paths. Moreover an algorithm is provided for solving the bicriterion problem. The proximity of the solutions of the k-shortest time-dependent path problem with the non-dominated solutions is assessed on a set of problems developed by the authors.  相似文献   

2.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

3.
This paper studies the optimal path problem for travelers driving with vehicles of a limited range, such as most battery electric vehicles currently available in the market. The optimal path in this problem often consists of several relay points, where the vehicles can be refueled to extend its range. We propose a stochastic optimal path problem with relays (SOPPR), which aims at minimizing a general expected cost while maintaining a reasonable arrival probability. To account for uncertainty in the road network, the travel speed on a road segment is treated as a discrete random variable, which determines the total energy required to traverse the segment. SOPPR is formulated in two stages in this paper. In the first stage, an optimal routing problem is solved repeatedly to obtain the expected costs and arrival probabilities from any node to all refueling nodes and the destination. With this information, the second stage constructs an auxiliary network, on which the sequence of refueling decisions can be obtained by solving another optimal path problem. Label-correcting algorithms are developed to solve the routing problems in both stages. Numerical experiments are conducted to compare the stochastic and deterministic models, to examine the impact of different parameters on the routing results, and to evaluate the computational performance of the proposed algorithms.  相似文献   

4.
This research focuses on finding the best transfer schemes in metro networks. Using sample-based time-invariant link travel times to capture the uncertainty of a realistic network, a two-stage stochastic integer programming model with the minimized expected travel time and penalty value incurred by transfer activities is formulated. The first stage aims to find a sequence of potential transfer nodes (stations) that can compose a feasible path from origins to destinations in the transfer activity network, and the second stage provides the least time paths passing by the generated transfer stations in the first stage for evaluating the given transfer schemes and then outputs the best routing information. To solve our proposed model, an efficient hybrid algorithm, in which the label correcting algorithm is embedded into a branch and bound searching framework, is presented to find the optimal solutions of the considered problem. Finally, the numerical experiments are implemented in different scales of metro networks. The computational results demonstrate the effectiveness and performance of the proposed approaches even for the large-scale Beijing metro network.  相似文献   

5.
The routing, scheduling and fleet deployment is an important integrated planning problem faced by liner shipping companies which also lift load from the spot market. This paper is concerned with coordinating the decisions of the assignment of ships to contractual and spot voyages, and the determination of ship routes and schedules in order to maximize profit. We propose a new model for representing voyages as nodes of a directed graph which is used to build a mixed integer programming formulation. Besides contractual and spot nodes, another type of node is put forward to represent a combination of a contractual voyage with one or more spot voyages. In addition, the concept of dominated nodes is introduced in order to discard them and reduce the effort of the search for an optimal solution. A set of test problems has been generated taking into account real world assumptions. The test problems are solved by an optimization software and computational results are reported. The results show the potential of the approach to solve test problems of moderate size.  相似文献   

6.
In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on the time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.  相似文献   

7.
Travel time is an important index for managers to evaluate the performance of transportation systems and an intuitive measure for travelers to choose routes and departure times. An important part of the literature focuses on predicting instantaneous travel time under recurrent traffic conditions to disseminate traffic information. However, accurate travel time prediction is important for assessing the effects of abnormal traffic conditions and helping travelers make reliable travel decisions under such conditions. This study proposes an online travel time prediction model with emphasis on capturing the effects of anomalies. The model divides a path into short links. A Functional Principal Component Analysis (FPCA) framework is adopted to forecast link travel times based on historical data and real-time measurements. Furthermore, a probabilistic nested delay operator is used to calculate path travel time distributions. To ensure that the algorithm is fast enough for online applications, parallel computation architecture is introduced to overcome the computational burden of the FPCA. Finally, a rolling horizon structure is applied to online travel time prediction. Empirical results for Guangzhou Airport Expressway indicate that the proposed method can capture an abrupt change in traffic state and provide a promising and reliable travel time prediction at both the link and path levels. In the case where the original FPCA is modified for parallelization, accuracy and computational effort are evaluated and compared with those of the sequential algorithm. The proposed algorithm is found to require only a piece rather than a large set of traffic incident records.  相似文献   

8.
This paper focuses on computational model development for the probit‐based dynamic stochastic user optimal (P‐DSUO) traffic assignment problem. We first examine a general fixed‐point formulation for the P‐DSUO traffic assignment problem, and subsequently propose a computational model that can find an approximated solution of the interest problem. The computational model includes four components: a strategy to determine a set of the prevailing routes between each origin–destination pair, a method to estimate the covariance of perceived travel time for any two prevailing routes, a cell transmission model‐based traffic performance model to calculate the actual route travel time used by the probit‐based dynamic stochastic network loading procedure, and an iterative solution algorithm solving the customized fixed‐point model. The Ishikawa algorithm is proposed to solve the computational model. A comparison study is carried out to investigate the efficiency and accuracy of the proposed algorithm with the method of successive averages. Two numerical examples are used to assess the computational model and the algorithm proposed. Results show that Ishikawa algorithm has better accuracy for smaller network despite requiring longer computational time. Nevertheless, it could not converge for larger network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

10.
Most of the studies address issues relating to the delivery from satellites to customers, which is throughout the end part of the linehaul-delivery system. Differing from the long-term strategic problems including the two-echelon vehicle routing problem (2E-VRP), the two-echelon location routing problem (2E-LRP) and the truck and trailer routing problem (TTRP) which make location decisions in depots or satellites, the paper introduces a short-term tactical problem named the two-echelon time-constrained vehicle routing problem in linehaul-delivery systems (2E-TVRP) that does not involve location decisions. The linehaul level and the delivery level are linked through city distribution centers (CDCs) located on the outskirts of cities. The 2E-TVRP has inter-CDC linehaul on the first level and urban delivery from CDCs to satellites on the second level. Vehicle routes on different levels are interacted by time constraints. A mixed integer nonlinear programming model for the 2E-TVRP is put forward, and a mixed integer linear programming model is used as the benchmark model. The Clarke and Wright savings heuristic algorithm (CW) improved by a local search phase is adopted. The 2E-TVRP formulations and the heuristic algorithm are tested by using 140 randomly-generated instances with up to 10 CDCs and 500 satellites. The computational results indicate that the heuristic can effectively solve various instances of the 2E-TVRP.  相似文献   

11.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

12.
The study formulated a ferry network design problem by considering the optimal fleet size, routing, and scheduling for both direct and multi-stop services. The objective function combines both the operator and passengers’ performance measures. Mathematically, the model is formulated as a mixed integer multiple origin–destination network flow problem with ferry capacity constraints. To solve this problem of practical size, this study developed a heuristic algorithm that exploits the polynomial-time performance of shortest path algorithms. Two scenarios of ferry services in Hong Kong were solved to demonstrate the performance of the heuristic algorithm. The results showed that the heuristic produced solutions that were within 1.3% from the CPLEX optimal solutions. The computational time is within tens of seconds even for problem size that is beyond the capability of CPLEX.  相似文献   

13.
Road transportation is one of the major sources of greenhouse gas emissions. To reduce energy consumption and alleviate this environmental problem, this study aims to develop an eco-routing algorithm for navigation systems. Considering that both fuel consumption and travel time are important factors when planning a trip, the proposed routing algorithm finds a path that consumes the minimum amount of gasoline while ensuring that the travel time satisfies a specified travel time budget and an on-time arrival probability. We first develop link-based fuel consumption models based on vehicle dynamics, and then the Lagrangian-relaxation-based heuristic approach is proposed to efficiently solve this NP-hard problem. The performance of the proposed eco-routing strategy is verified in a large-scale network with real travel time and fuel consumption data. Specifically, a sensitivity analysis of fuel consumption reduction for travel demand and travel time buffer is discussed in our simulation study.  相似文献   

14.
Travel time, travel time reliability and monetary cost have been empirically identified as the most important criteria influencing route choice behaviour. We concentrate on travel time and travel time reliability and review two prominent user equilibrium models incorporating these two factors. We discuss some shortcomings of these models and propose alternative bi-objective user equilibrium models that overcome the shortcomings. Finally, based on the observation that both models use standard deviation of travel time within their measure of travel time reliability, we propose a general travel time reliability bi-objective user equilibrium model. We prove that this model encompasses those discussed previously and hence forms a general framework for the study of reliability related user equilibrium. We demonstrate and validate our concepts on a small three-link example.  相似文献   

15.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

16.
Hazardous materials routing constitutes a critical decision in mitigating the associated transportation risk. This paper presents a decision support system for assessing alternative distribution routes in terms of travel time, risk and evacuation implications while coordinating the emergency response deployment decisions with the hazardous materials routes. The proposed system provides the following functionalities: (i) determination of alternative non-dominated hazardous materials distribution routes in terms of cost and risk minimization, (ii) specification of the hazardous materials first-response emergency service units locations in order to achieve timely response to an accident, and (iii) determination of evacuation paths from the impacted area to designated shelters and estimation of the associated evacuation time. The proposed system has been implemented, used and evaluated for assessing alternative hazardous materials routing decisions within the heavily industrialized area of Thriasion Pedion of Attica, Greece. The implementation of the aforementioned functionalities is based on two new integer programming models for the hazardous materials routing and the emergency response units location problems, respectively. A simplified version of the routing model is solved by an existing heuristic algorithm developed by the authors. A new Lagrangean relaxation heuristic algorithm has been developed for solving the emergency response units location problem. The focus of this paper is on the exposition of the proposed decision support system components and functionalities. Special emphasis is placed on the presentation of the two new mathematical models and the new solution method for the location model.  相似文献   

17.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we study two closely related airline planning problems: the robust weekly aircraft maintenance routing problem (RWAMRP) and the tail assignment problem (TAP). In real life operations, the RWAMRP solution is used in tactical planning whereas the TAP solution is implemented in operational planning. The main objective of these two problems is to minimize the total expected propagated delay (EPD) of the aircraft routes. To formulate the RWAMRP, we propose a novel weekly line-of-flights (LOF) network model that can handle complex and nonlinear cost functions of EPD. Because the number of LOFs grows exponentially with the number of flights to be scheduled, we propose a two-stage column generation approach to efficiently solve large-scale real-life RWAMRPs. Because the EPD of an LOF is highly nonlinear and can be very time-consuming to accurately compute, we propose three lower bounds on the EPD to solve the pricing subproblem of the column generation. Our approach is tested on eight real-life test instances. The computational results show that the proposed approach provides very tight LP relaxation (within 0.6% of optimal solutions) and solves the test case with more than 6000 flights per week in less than three hours. We also investigate the solutions obtained by our approach over 500 simulated realizations. The simulation results demonstrate that, in all eight test instances, our solutions result in less EPDs than those obtained from traditional methods. We then extend our model and solution approach to solve realistically simulated TAP instances.  相似文献   

19.
Reliable route guidance can be obtained by solving the reliable a priori shortest path problem, which finds paths that maximize the probability of arriving on time. The goal of this paper is to demonstrate the benefits and applicability of such route guidance using a case study. An adaptive discretization scheme is first proposed to improve the efficiency in computing convolution, a time-consuming step used in the reliable routing algorithm to obtain path travel time distributions. Methods to construct link travel time distributions from real data in the case study are then discussed. Particularly, the travel time distributions on arterial streets are estimated from linear regression models calibrated from expressway data. Numerical experiments demonstrate that optimal paths are substantially affected by the reliability requirement in rush hours, and that reliable route guidance could generate up to 5-15% of travel time savings. The study also verifies that existing algorithms can solve large-scale problems within a reasonable amount of time.  相似文献   

20.
Intelligent decision support systems for the real-time management of landing and take-off operations can be very effective in helping air traffic controllers to limit airport congestion at busy terminal control areas. The key optimization problem to be solved regards the assignment of airport resources to take-off and landing aircraft and the aircraft sequencing on them. The problem can be formulated as a mixed integer linear program. However, since this problem is strongly NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a short computation time. This paper presents a number of algorithmic improvements implemented in the AGLIBRARY solver (a state-of-the-art optimization solver to deal with complex routing and scheduling problems) in order to improve the possibility of finding good quality solutions quickly. The proposed framework starts from a good initial solution for the aircraft scheduling problem with fixed routes (given the resources to be traversed by each aircraft), computed via a truncated branch-and-bound algorithm. A metaheuristic is then applied to improve the solution by re-routing some aircraft in the terminal control area. New metaheuristics, based on variable neighbourhood search, tabu search and hybrid schemes, are introduced. Computational experiments are performed on an Italian terminal control area under various types of disturbances, including multiple aircraft delays and a temporarily disrupted runway. The metaheuristics achieve solutions of remarkable quality, within a small computation time, compared with a commercial solver and with the previous versions of AGLIBRARY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号