首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
This paper investigates the problem of finding the K reliable shortest paths (KRSP) in stochastic networks under travel time uncertainty. The KRSP problem extends the classical K loopless shortest paths problem to the stochastic networks by explicitly considering travel time reliability. In this study, a deviation path approach is established for finding K α-reliable paths in stochastic networks. A deviation path algorithm is proposed to exactly solve the KRSP problem in large-scale networks. The A* technique is introduced to further improve the KRSP finding performance. A case study using real traffic information is performed to validate the proposed algorithm. The results indicate that the proposed algorithm can determine KRSP under various travel time reliability values within reasonable computational times. The introduced A* technique can significantly improve KRSP finding performance.  相似文献   

2.
Path travel time reliability is an essential measure of the quality of service for transportation systems and an important attribute in travelers’ route and departure time scheduling. This paper investigates a fundamental problem of finding the most reliable path under different spatial correlation assumptions, where the path travel time variability is represented by its standard deviation. To handle the non-linear and non-additive cost functions introduced by the quadratic forms of the standard deviation term, a Lagrangian substitution approach is adopted to estimate the lower bound of the most reliable path solution through solving a sequence of standard shortest path problems. A subgradient algorithm is used to iteratively improve the solution quality by reducing the optimality gap. To characterize the link travel time correlation structure associated with the end-to-end trip time reliability measure, this research develops a sampling-based method to dynamically construct a proxy objective function in terms of travel time observations from multiple days. The proposed algorithms are evaluated under a large-scale Bay Area, California network with real-world measurements.  相似文献   

3.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
With a particular emphasis on the end-to-end travel time prediction problem, this paper proposes an information-theoretic sensor location model that aims to minimize total travel time uncertainties from a set of point, point-to-point and probe sensors in a traffic network. Based on a Kalman filtering structure, the proposed measurement and uncertainty quantification models explicitly take into account several important sources of errors in the travel time estimation/prediction process, such as the uncertainty associated with prior travel time estimates, measurement errors and sampling errors. By considering only critical paths and limited time intervals, this paper selects a path travel time uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework with a unified modeling of both recurring and non-recurring traffic conditions. An analytical determinant maximization model and heuristic beam-search algorithm are used to find an effective lower bound and solve the combinatorial sensor selection problem. A number of illustrative examples and one case study are used to demonstrate the effectiveness of the proposed methodology.  相似文献   

5.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

6.
This paper studies link travel time estimation using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation–Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times.  相似文献   

7.
Reliable route guidance can be obtained by solving the reliable a priori shortest path problem, which finds paths that maximize the probability of arriving on time. The goal of this paper is to demonstrate the benefits and applicability of such route guidance using a case study. An adaptive discretization scheme is first proposed to improve the efficiency in computing convolution, a time-consuming step used in the reliable routing algorithm to obtain path travel time distributions. Methods to construct link travel time distributions from real data in the case study are then discussed. Particularly, the travel time distributions on arterial streets are estimated from linear regression models calibrated from expressway data. Numerical experiments demonstrate that optimal paths are substantially affected by the reliability requirement in rush hours, and that reliable route guidance could generate up to 5-15% of travel time savings. The study also verifies that existing algorithms can solve large-scale problems within a reasonable amount of time.  相似文献   

8.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

9.
This study investigates the important problem of determining a reliable path in a stochastic network with correlated link travel times. First, the distribution of path travel time is quantified by using trip records from GPS probe vehicles. Second, the spatial correlation of link travel time is explicitly considered by using a correlation coefficient matrix, which is incorporated into the α-reliable path problem by Cholesky decomposition. Third, the Lagrangian relaxation based framework is used to handle the α-reliable path problem, by which the intractable problem with a non-linear and non-additive structure can be decomposed into several easy-to-solve problems. Finally, the path-finding performance of this approach is tested on a real-world network. The results show that 15 iterations of calculation can yield a small relative gap between upper and lower bounds of the optimal solution and the average running time is about 5 s for most OD settings. The applicability of α-reliable path finding is validated by a case study.  相似文献   

10.
The increasing concern over global warming has led to the rapid development of the electric vehicle industry. Electric vehicles (EVs) have the potential to reduce the greenhouse effect and facilitate more efficient use of energy resources. In this paper, we study several EV route planning problems that take into consideration possible battery charging or swapping operations. Given a road network, the objective is to determine the shortest (travel time) route that a vehicle with a given battery capacity can take to travel between a pair of vertices or to visit a set of vertices with several stops, if necessary, at battery switch stations. We present polynomial time algorithms for the EV shortest travel time path problem and the fixed tour EV touring problem, where the fixed tour problem requires visiting a set of vertices in a given order. Based on the result, we also propose constant factor approximation algorithms for the EV touring problem, which is a generalization of the traveling salesman problem.  相似文献   

11.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

12.
This paper proposes a solution to the problem of limited network sensor coverage caused by insufficient sample size of probe vehicles or inadequate numbers of fixed sensors. A framework is proposed to estimate link travel times using available data from neighbouring links. Two clues are used for real-time travel time estimation: link historical travel time data and online travel time data from neighbour links. In the absence of online travel time data from neighbour links, historical records only have to be relied upon. However, where the two types of data are available, a data fusion scheme can be applied to make use of the two clues. The proposed framework is validated using real-life data from the City of Vancouver, British Columbia. The estimation accuracy is found to be comparable to the existing literature. Overall, the results demonstrate the feasibility of using neighbour links data as an additional source of information that might not have been extensively explored before.  相似文献   

13.
Liao  Feixiong 《Transportation》2019,46(4):1319-1343

Joint travel problem (JTP) is an extension of the classic shortest path problem and relevant to shared mobility. A pioneering endeavor via supernetwork framework has been put forward to model two-person JTP. However, it was only addressed in the static context and with the assumption of zero waiting disutility, which resulted in no or weak synchronization among the travelers. This paper proposes a space–time multi-state supernetwork framework to address JTP for conducting one joint activity in the time-dependent context. Space–time synchronization and various choice facets related to joint travel are captured systematically. Two-person JTP is first discussed in a uni-modal transport network, and further extended to incorporate multi-modal and multi-person respectively. Stage-wise recursive formulations are proposed to find the optimal joint paths. It is found that JTP is a variant of Steiner tree problem by reduction and the number of meeting/departing points has no impact on the run-time complexity in space–time multi-state supernetworks.

  相似文献   

14.
In this paper, we study the preferences for uncertain travel times in which probability distributions may not be fully characterized. In evaluating an uncertain travel time, we explicitly distinguish between risk, where the probability distribution is precisely known, and ambiguity, where it is not. In particular, we propose a new criterion called ambiguity-aware CARA travel time (ACT) for evaluating uncertain travel times under various attitudes of risk and ambiguity, which is a preference based on blending the Hurwicz criterion and Constant Absolute Risk Aversion (CARA). More importantly, we show that when the uncertain link travel times are independently distributed, finding the path that minimizes travel time under the ACT criterion is essentially a shortest path problem. We also study the implications on Network Equilibrium (NE) model where travelers on the traffic network are characterized by their knowledge of the network uncertainty as well as their risk and ambiguity attitudes under the ACT. We derive and analyze the existence and uniqueness of solutions under NE. Finally, we obtain the Price of Anarchy that characterizes the inefficiency of this new equilibrium. The computational study suggests that as uncertainty increases, the influence of selfishness on inefficiency diminishes.  相似文献   

15.
The eco-routing problem concerned in this paper addresses the optimal route choice of eco-drivers who aim to meet an emission standard imposed by regulators, while trying to find the path with the minimum total operating cost, which consists of both travel time and fuel costs. The paper first develops fuel consumption and greenhouse gas emissions estimation models that link emission rates to a vehicle’s physical and operational properties. Unlike most studies in the literature, the emission model developed in this paper retains as many microscopic characteristics as feasible in the context of route planning. Specifically, it is able to approximate the impacts of major acceleration events associated with link changes and intersection idling, and yet does not require detailed acceleration data as inputs. The proposed eco-routing model also explicitly captures delays at intersections and the emissions associated with them. Using a simple probabilistic model, the impacts of different turning movements on eco-routing are incorporated. The proposed model is formulated as a constrained shortest path problem and solved by off-the-shelf solvers. Numerical experiments confirm that vehicle characteristics, especially weight and engine displacement, may influence eco-routing. The results also suggest that ignoring the effects of turning movements and acceleration may lead to sub-optimal routes for eco-drivers.  相似文献   

16.
Global Positioning System and other location-based services record vehicles’ spatial locations at discrete time stamps. Considering these recorded locations in space with given specific time stamps, this paper proposes a novel time-dependent graph model to estimate their likely space–time paths and their uncertainties within a transportation network. The proposed model adopts theories in time geography and produces the feasible network–time paths, the expected link travel times and dwell times at possible intermediate stops. A dynamic programming algorithm implements the model for both offline and real-time applications. To estimate the uncertainty, this paper also develops a method based on the potential path area for all feasible network–time paths. This paper uses a set of real-world trajectory data to illustrate the proposed model, prove the accuracy of estimated results and demonstrate the computational efficiency of the estimation algorithm.  相似文献   

17.
Multi-state supernetwork framework for the two-person joint travel problem   总被引:1,自引:0,他引:1  
Most travel behavior studies on route and mode choice focus only on an individual level. This paper adopts the concept of multi-state supernetworks to model the two-person joint travel problem (JTP). Travel is differentiated in terms of activity-vehicle-joint states, i.e. travel separately or jointly with which transport mode and with which activities conducted. In each state, route choice can be addressed given the state information and travel preference parameters. The joint travel pattern space is represented as a multi-state supernetwork, which is constructed by assigning the individual and joint networks to all possible states and connecting them via transfer links at joints where individuals can meet or depart. Besides route choice, the choices of where and when to meet, and which transport mode(s) to use can all be explicitly represented in a consistent fashion. A joint path through the supernetwork corresponds to a specific joint travel pattern. Then, JTP is reduced to an optimization problem to find the joint path with the minimum disutility. Three standard shortest path algorithm variants are proposed to find the optimal under different scenarios. The proposed framework further indicates the feasibility of multi-state supernetworks for addressing high dimensional problems and contributes to the design of a next generation of joint routing systems.  相似文献   

18.
Lane changes occur as many times as turning movements are needed while following a designated path. The cost of a route with many lane changes is likely to be more expensive than that with less lane changes, and unrealistic paths with impractical lane changes should be avoided for drivers' safety. In this regard, a new algorithm is developed in this study to find the realistic shortest path considering lane changing. The proposed algorithm is a modified link‐labeling Dijkstra algorithm considering the effective lane‐changing time that is a parametric function of the prevailing travel speed and traffic density. The parameters were estimated using microscopic traffic simulation data, and the numerical test demonstrated the performance of the proposed algorithm. It was found that the magnitude of the effect of the effective lane‐changing time on determining the realistic shortest path is nontrivial, and the proposed algorithm has capability to exclude links successfully where the required lane changes are practically impossible. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Recent research has investigated various means of measuring link travel times on freeways. This search has been motivated in part by the fact that travel time is considered to be more informative to users than local velocity measurements at a detector station. But direct travel time measurement requires the correlation of vehicle observations at multiple locations, which in turn requires new communications infrastructure and/or new detector hardware. This paper presents a method for estimating link travel time using data from an individual dual loop detector, without requiring any new hardware. The estimation technique exploits basic traffic flow theory to extrapolate local conditions to an extended link. In the process of estimating travel times, the algorithm also estimates vehicle trajectories. The work demonstrates that the travel time estimates are very good provided there are no sources of delay, such as an incident, within a link.  相似文献   

20.
In this paper, a multi‐step ahead prediction algorithm of link travel speeds has been developed using a Kalman filtering technique in order to calculate a dynamic shortest path. The one‐step and the multi‐step ahead link travel time prediction models for the calculation of the dynamic shortest path have been applied to the directed test network that is composed of 16 nodes: 3 entrance nodes, 2 exit nodes and 11 internal nodes. Time‐varying traffic conditions such as flows and travel time data for the test network have been generated using the CORSIM model. The results show that the multi‐step ahead algorithm is compared more favorably for searching the dynamic shortest time path than the other algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号