首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

2.
Eco-Driving, a driver behaviour-based method, has featured in a number of national policy documents as part of CO2 emission reduction or climate change strategies. This investigation comprises a detailed assessment of acceleration and deceleration in Eco-Driving Vehicles at different penetration levels in the vehicle fleet, under varying traffic composition and volume. The impacts of Eco-Driving on network-wide traffic and environmental performance at a number of speed-restricted road networks (30?km/h) is quantified using microsimulation. The results show that increasing levels of Eco-Driving in certain road networks result in significant environmental and traffic congestion detriments at the road network level in the presence of heavy traffic. Increases in CO2 emissions of up to 18% were found. However, with the addition of vehicle-to-vehicle or vehicle-to-infrastructure communication technology which facilitates dynamic driving control on speed and acceleration/deceleration in vehicles, improvements in CO2 emissions and traffic congestion are possible using Eco-Driving.  相似文献   

3.
ABSTRACT

To reduce the traffic accident death rate effectively and alleviate the traffic congestion phenomenon, this study proposes a new type of car-following model under the influence of drivers’ time-varying delay response time. Based on Lyapunov function theory, this paper reduces the traffic accident rate problem to the stability issues of the new model. By constructing suitable Lyapunov functions and using the linear matrix inequality method, the stability problem of the new car-following model is studied. The model, under the action of the controller, can effectively restrain traffic congestion. Using the traffic accident rate model proposed by Solomon, compared with the car-following model without the controller, the model under the controller shows a stronger convergence. This also means that the traffic congestion phenomenon has been effectively suppressed while greatly reducing the mortality rate of traffic accidents.  相似文献   

4.
Morning commuters choose their departure times based on a combination of factors—the chances of running into bottleneck congestion, the likely schedule delays, and parking space availability. This study investigates the morning commute problem with both bottleneck congestion and parking space constraints. In particular, it considers the situation when some commuters have reserved parking spots while others have to compete for public ones on a first-come-first-served basis. Unlike the traditional pure bottleneck model, the rush-hour dynamic traffic pattern with a binding parking capacity constraint varies with the relative proportions of the two classes of commuters. It is found that an appropriate combination of reserved and unreserved parking spots can temporally relieve traffic congestion at the bottleneck and hence reduce the total system cost, because commuters without a reserved parking spot are compelled to leave home earlier in order to secure a public parking spot. System performance is quantified in terms of the relative proportions of the two classes of commuters and is compared with those in the extreme cases when all auto commuters have to compete for parking and when none of them have to compete for one.  相似文献   

5.
Energy and emissions impacts of a freeway-based dynamic eco-driving system   总被引:1,自引:0,他引:1  
Surface transportation consumes a vast quantity of fuel and accounts for about a third of the US CO2 emissions. In addition to the use of more fuel-efficient vehicles and carbon-neutral alternative fuels, fuel consumption and CO2 emissions can be lowered through a variety of strategies that reduce congestion, smooth traffic flow, and reduce excessive vehicle speeds. Eco-driving is one such strategy. It typically consists of changing a person’s driving behavior by providing general static advice to the driver (e.g. do not accelerate too quickly, reduce speeds, etc.). In this study, we investigate the concept of dynamic eco-driving, where advice is given in real-time to drivers changing traffic conditions in the vehicle’s vicinity. This dynamic strategy takes advantage of real-time traffic sensing and telematics, allowing for a traffic management system to monitor traffic speed, density, and flow, and then communicates advice in real-time back to the vehicles. By providing dynamic advice to drivers, approximately 10–20% in fuel savings and lower CO2 emissions are possible without a significant increase in travel time. Based on simulations, it was found that in general, higher percentage reductions in fuel consumption and CO2 emission occur during severe compared to less congested scenarios. Real-world experiments have also been carried out, showing similar reductions but to a slightly smaller degree.  相似文献   

6.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

7.
This study investigates the mechanism of traffic breakdown and establishes a traffic flow model that precisely simulates the stochastic and dynamic processes of traffic flow at a bottleneck. The proposed model contains two models of stochastic processes associated with traffic flow dynamics: a model of platoon formation behind a bottleneck and a model of speed transitions within a platoon. After these proposed models are validated, they are applied to a simple one-way, one-lane expressway section containing a bottleneck, and the stochastic nature of traffic breakdown is demonstrated through theoretical exercises.  相似文献   

8.
9.
Traffic congestion caused by traffic accidents contributes to CO2 emissions. Generally, more efficient and prompt responses to accidents lead to reduced traffic congestion as well as CO2 emissions. Here we assess the CO2 emissions impacts of freeway accidents, applies an existing model to capture spatio-temporally congested regions caused by freeway accidents. A case study for the assessment of CO2 emissions impacts of based on the results from the model is presented.  相似文献   

10.
This work focuses on developing a variety of strategies for alleviating congestion at freeway merging points as well as improving the safety of these points. On the Tokyo Metropolitan Expressway, traffic congestion frequently occurs at merging bottleneck sections, especially during heavy traffic demand. The Tokyo Metropolitan Expressway public corporation, generally applies different empirical strategies to increase the flow rate and decrease the accident rate at the merging sections. However, these strategies do not rely either on any behavioral characteristic of the merging traffic or on the geometric design of the merging segments. There have been only a few research publications concerned with traffic behavior and characteristics in these situations. Therefore, a three‐year extensive study has been undertaken to investigate traffic behavior and characteristics during the merging process under congested situations in order to design safer and less congested merging points as well as to apply more efficient control at these bottleneck sections. Two groups of strategies were investigated in this study. The First group was related to the traffic characteristics, and the second group to the geometric characteristics. In the first group, the control strategies related to closure of freeway and ramp lanes as well as lane‐changing maneuver restriction were investigated through a simulation program, detector data, and field experiment. In the second group, the angle of convergence of the ramp with the freeway in relation to merging capacity was analyzed using a simulation program. Results suggested the potential benefits of using proposed strategies developed in this work and can serve as initial guidance for the reduction of delay and improvement of safety under congested traffic conditions.  相似文献   

11.
In this paper, ramp systems on the Beijing 3rd ring road are described as double-cell ramp systems with a bottleneck. By analyzing empirical data for the Beijing 3rd ring road, we found that the initial states have an important impact on the final convergence states of the ramp systems. Then, we studied the dynamic process of the ramp systems, determined the congestion mechanism, and then designed a ramp control method based on the obtained mechanism. Under a feasible demand, double-cell ramp systems exhibit two typical cases, including an upstream-bottleneck system (in which the bottleneck cell is upstream) and a downstream-bottleneck system (in which the bottleneck cell is downstream). Then, a cell transmission model is used to analyze the dynamic evolution processes, starting from different initial states, and determine the congestion mechanism for each case. It is proven that the two systems have different possible equilibrium sets and congestion mechanisms. In an upstream-bottleneck system, the downstream always converges to the uncongested equilibrium, while the upstream bottleneck cell may experience congestion under certain initial states. In a downstream-bottleneck system, the congestion starts downstream, and then gradually propagates upstream. Furthermore, based on the different congestion mechanisms, two demand adjustment strategies are proposed, which redistribute the stationary feasible demand. The simulation results indicate that both systems can converge to uncongested equilibriums after demand adjustment. The ramp demand adjustment methods provide a scientific basis for urban traffic system management.  相似文献   

12.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed.  相似文献   

13.
A multimodal, multiclass stochastic dynamic traffic assignment model was developed to evaluate pre‐trip and enroute travel information provision strategies. Three different information strategies were examined: user optimum [UO], system optimum [SO] and mixed optimum [MO]. These information provision strategies were analyzed based on the levels of traffic congestion and market penetration rate for the information equipment. Only two modes, bus and car, were used for evaluating and calculating the modal split ratio. Several scenarios were analyzed using day‐to‐day and within day dynamic models. From the results analyzed, it was found that when a traffic manager provides information for drivers using the UO strategy and drivers follow the provided information absolutely, the total travel time may increases over the case with no information. Such worsening occurs when drivers switch their routes and face traffic congestion on the alternative route. This phenomenon is the 'Braess Paradox'.  相似文献   

14.
This paper analyzes the dynamic traffic assignment problem on a two-alternative network with one alternative subject to a dynamic pricing that responds to real-time arrivals in a system optimal way. Analytical expressions for the assignment, revenue and total delay in each alternative are derived as a function of the pricing strategy. It is found that minimum total system delay can be achieved with many different pricing strategies. This gives flexibility to operators to allocate congestion to either alternative according to their specific objective while maintaining the same minimum total system delay. Given a specific objective, the optimal pricing strategy can be determined by finding a single parameter value in the case of HOT lanes. Maximum revenue is achieved by keeping the toll facility at capacity with no queues for as long as possible. Guidelines for implementation are discussed.  相似文献   

15.
A dynamic ‘car-following’ extension of the conventional economic model of traffic congestion is presented, which predicts the average cost function for trips in stationary states to be significantly different from the conventional average cost function derived from the speed-flow function. When applied to a homogeneous road, the model reproduces the same stationary state equilibria as the conventional model, including the hypercongested ones. However, stability analysis shows that the latter are dynamically unstable. The average cost function for stationary state traffic coincides with the conventional function for non-hypercongested traffic, but rises vertically at the road’s capacity due to queuing, instead of bending backwards. When extending the model to include an upstream road segment, it predicts that such queuing will occur under hypercongested conditions, while the general shape of the average cost function for full trips does not change, implying that hypercongestion will not occur on the downstream road segment. These qualitative predictions are verified empirically using traffic data from a Dutch bottleneck. Finally, it is shown that reduced-form average cost functions, that relate the sum of average travel cost and average schedule delay costs to the number of users in a dynamic equilibrium, certainly need not have the intuitive convex shape, but may very well be concave – despite the fact that the underlying speed-flow function may be convex.  相似文献   

16.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper considers the problem of dynamic congestion pricing that determines optimal time-varying tolls for a pre-specified subset of arcs with bottleneck on a congested general traffic network. A two-person nonzero-sum dynamic Stackelberg game model is formulated with the assumption that the underlying information structure is open loop. Characteristics of the Stackelberg equilibrium solution are analyzed. The Hooke–Jeeves algorithm that obviates an evaluation of the gradient vector of the objective function is presented with a numerical example. The paper concludes with its future extensions.  相似文献   

18.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

19.
Variable speed limit (VSL) schemes are developed based on the Kinematic Wave theory to increase discharge rates at severe freeway bottlenecks induced by non-recurrent road events such as incidents or work zones while smoothing speed transition. The main control principle is to restrict upstream demand (in free-flow) progressively to achieve three important objectives: (i) to provide gradual speed transition at the tail of an event-induced queue, (ii) to clear the queue around the bottleneck, and (iii) to discharge traffic at the stable maximum flow that can be sustained at the bottleneck without breakdown. These control objectives are accomplished without imposing overly restrictive speed limits. We further provide remedies for (a) underutilized bottleneck capacity due to underestimated stable maximum flow and (b) a re-emergent queue at the bottleneck due to an overestimated stable maximum flow. We analytically formulate the reductions in total delay in terms of control parameters to provide an insight into the system performance and sensitivity. The results from the parameter analysis suggest that significant delay savings can be realized with the proposed VSL control strategies.  相似文献   

20.
The paper considers traffic assignment, with traffic controls, in an increasingly dynamic way. First, a natural way of introducing the responsive policy, Po, into steady state traffic assignment is presented. Then it is shown that natural stability results follow within a dynamical version of this static equilibrium model (still with a constant demand). We are able to obtain similar stability results when queues are explicitly allowed for, provided demand is constant. Finally we allow demand to vary with time; we consider the dynamic assignment problem with signal-settings now fixed. Here we assume that vehicles are very short and that deterministic queueing theory applies, and show that the time-dependent queueing delay at the bottleneck at the end of a link is a monotone function of the time-dependent input profile to the bottleneck. We have been unable to obtain results when dynamic demand and responsive signal control are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号