首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Driving behavior is generally considered to be one of the most important factors in crash occurrence. This paper aims to evaluate the benefits of utilizing context-relevant information in the driving behavior assessment process (i.e. contextual driving behavior assessment approach). We use a Bayesian Network (BN) model that investigates the relationships between GPS driving observations, individual driving behavior, individual driving risks, and individual crash frequency. In contrast to prior studies without context information (i.e. non-contextual approach), the data used in the BN approach is a combination of contextual features in the surrounding environment that may contribute to crash risk, such as road conditions surrounding the vehicle of interest and dynamic traffic flow information, as well as the non-contextual data such as instantaneous driving speed and the acceleration/deceleration of a vehicle. An information-aggregation mechanism is developed to aggregates massive amounts of vehicle GPS data points, kinematic events and context information into drivel-level data. With the proposed model, driving behavior risks for drivers is assessed and the relationship between contextual driving behavior and crash occurrence is established. The analysis results in the case study section show that the contextual model has significantly better performance than the non-contextual model, and that drivers who drive at a speed faster than others or much slower than the speed limit at the ramp, and with more rapid acceleration or deceleration on freeways are more likely to be involved in crash events. In addition, younger drivers, and female drivers with higher VMT are found to have higher crash risk.  相似文献   

2.
Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately.  相似文献   

3.
Collecting microscopic pedestrian behavior and characteristics data is important for optimizing the design of pedestrian facilities for safety, efficiency, and comfortability. This paper provides a framework for the automated classification of pedestrian attributes such as age and gender based on information extracted from their walking gait behavior. The framework extends earlier work on the automated analysis of gait parameters to include analysis of the gait acceleration data which can enable the quantification of the variability, rhythmic pattern and stability of pedestrian’s gait. In this framework, computer vision techniques are used for the automatic detection and tracking of pedestrians in an open environment resulting in pedestrian trajectories and the speed and acceleration dynamic profiles. A collection of gait features are then derived from those dynamic profiles and used for the classification of pedestrian attributes. The gait features include conventional gait parameters such as gait length and frequency and dynamic parameters related to gait variations and stability measures. Two different techniques are used for the classification: a supervised k-Nearest Neighbors (k-NN) algorithm and a newly developed semi-supervised spectral clustering. The classification framework is demonstrated with two case studies from Vancouver, British Columbia and Oakland, California. The results show the superiority of features sets including gait variations and stability measures over features relying only on conventional gait parameters. For gender, correct classification rates (CCR) of 80% and 94% were achieved for the Vancouver and Oakland case studies, respectively. The classification accuracy for gender was higher in the Oakland case which only considered pedestrians walking alone. Pedestrian age classification resulted in a CCR of 90% for the Oakland case study.  相似文献   

4.
A promising alternative transportation mode to address growing transportation and environmental issues is bicycle transportation, which is human-powered and emission-free. To increase the use of bicycles, it is fundamental to provide bicycle-friendly environments. The scientific assessment of a bicyclist’s perception of roadway environment, safety and comfort is of great interest. This study developed a methodology for categorizing bicycling environments defined by the bicyclist’s perceived level of safety and comfort. Second-by-second bicycle speed data were collected using global positioning systems (GPS) on public bicycles. A set of features representing the level of bicycling environments was extracted from the GPS-based bicycle speed and acceleration data. These data were used as inputs for the proposed categorization algorithm. A support vector machine (SVM), which is a well-known heuristic classifier, was adopted in this study. A promising rate of 81.6% for correct classification demonstrated the technical feasibility of the proposed algorithm. In addition, a framework for bicycle traffic monitoring based on data and outcomes derived from this study was discussed, which is a novel feature for traffic surveillance and monitoring.  相似文献   

5.
Travel mode identification is an essential step in travel information detection with global positioning system (GPS) survey data. This paper presents a hybrid procedure for mode identification using large-scale GPS survey data collected in Beijing in 2010. In a first step, subway trips were detected by applying a GPS/geographic information system (GIS) algorithm and a multinomial logit model. A comparison of the identification results reveals that the GPS/GIS method provides higher accuracy. Then, the modes of walking, bicycle, car and bus were determined using a nested logit model. The combined success rate of the hybrid procedure was 86%. These findings can be used to identify travel modes based on GPS survey data, which will significantly improve the efficiency and accuracy of travel surveys and data analysis. By providing crucial travel information, the results also contribute to modeling and analyzing travel behaviors and are readily applicable to a wide range of transportation practices.  相似文献   

6.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

7.
With the increasing prevalence of geo-enabled mobile phone applications, researchers can collect mobility data at a relatively high spatial and temporal resolution. Such data, however, lack semantic information such as the interaction of individuals with the transportation modes available. On the other hand, traditional mobility surveys provide detailed snapshots of the relation between socio-demographic characteristics and choice of transportation modes. Transportation mode detection is currently approached using features such as speed, acceleration and direction either on their own or in combination with GIS data. Combining such information with socio-demographic characteristics of travellers has the potential of offering a richer modelling framework that could facilitate better transportation mode detection using variables such as age and disability. In this paper, we explore the possibility to include both elements of the environment and individual characteristics of travellers in the task of transportation mode detection. Using dynamic Bayesian Networks, we model the transition matrix to account for such auxiliary data by using an informative Dirichlet prior constructed using data from traditional mobility surveys. Results have shown that it is possible to achieve comparable accuracy with the most widely used classification algorithms while having a rich modelling framework, even in the case of sparse mobility data.  相似文献   

8.
The critical component of all emission models is a driving cycle representing the traffic behaviour. Although Indian driving cycles were developed to test the compliance of Indian vehicles to the relevant emission standards, they neglects higher speed and acceleration and assume all vehicle activities to be similar irrespective of heterogeneity in the traffic mix. Therefore, this study is an attempt to develop an urban driving cycle for estimating vehicular emissions and fuel consumption. The proposed methodology develops the driving cycle using micro-trips extracted from real-world data. The uniqueness of this methodology is that the driving cycle is constructed considering five important parameters of the time–space profile namely, the percentage acceleration, deceleration, idle, cruise, and the average speed. Therefore, this approach is expected to be a better representation of heterogeneous traffic behaviour. The driving cycle for the city of Pune in India is constructed using the proposed methodology and is compared with existing driving cycles.  相似文献   

9.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

10.
11.
Increased speed variation on urban arterials is associated with reductions in both operational performance and safety. Traffic flow, mean speed, traffic control parameters and geometric design features are known to affect speed variation. An exploratory study of the relationships among these variables could provide a foundation for improving the operational and safety performance of urban arterials, however, such a study has been hampered by problems in measuring speeds. The measurement of speed has traditionally been accomplished using spot speed collection methods such as radar, laser and loop detectors. These methods can cover only limited locations, and consequently are not able to capture speed distributions along an entire network, or even throughout any single road segment. In Shanghai, it is possible to acquire the speed distribution of any roadway segment, over any period of interest, by capturing data from Shanghai’s 50,000+ taxis equipped with Global Positional Systems (GPS). These data, hereafter called Floating Car Data, were used to calculate mean speed and speed variation on 234 road segments from eight urban arterials in downtown Shanghai. Hierarchical models with random variables were developed to account for spatial correlations among segments within each arterial and heterogeneities among arterials. Considering that traffic demand changes throughout the day, AM peak, Noon off-peak, and PM peak hours were studied separately. Results showed that increases in number of lanes and number of access points, the presence of bus stops and increases in mean speed were all associated with increased speed variation, and that increases in traffic volume and traffic signal green times were associated with reduced speed variation. These findings can be used by engineers to minimize speed differences during the road network planning stage and continuing through the traffic management phase.  相似文献   

12.
Road designers assume that drivers will follow the road alignment with trajectories centred in the lane, and move at the design speed parallel to the road centreline (i.e., the horizontal alignment). Therefore, they assume that if the horizontal alignment indicates the “designed trajectory”, the driving path indicates the “operating trajectory”. However, at present, they do not have the necessary tools to measure the relationship between the designed alignment and possible vehicle trajectories.The paper has two objectives: (a) to develop an understanding of the root causes of differences between road alignment and vehicle trajectories; and (b) to define and calibrate a model that estimates the local curvature of trajectories on the basis of the designed horizontal alignment.The two objectives were pursued by carrying out a naturalistic survey using vehicles equipped with high precision GPS in real-time kinematics (RTK) mode driven by test drivers on road sections of known geometric characteristics. The results provide an insight into the effects of road geometrics on driver behaviour, thus anticipating possible driving errors or unexpected/undesired behaviours, information which can then be used to correct possible inconsistencies when making decisions at the design stage.  相似文献   

13.
14.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   

15.
This paper explores the influence of individuals’ environmental attitudes and urban design features on travel behavior, including mode choice. It uses data from residents of 13 new neighborhood UK developments designed to support sustainable travel. It is found that almost all respondents were concerned about environmental issues, but their views did not necessarily ‘match’ their travel behavior. Individuals’ environmental concerns only had a strong relationship with walking within and near their neighborhood, but not with cycling or public transport use. Residents’ car availability reduced public transport trips, walking and cycling. The influence of urban design features on travel behaviors was mixed, higher incidences of walking in denser, mixed and more permeable developments were not found and nor did residents own fewer cars than the population as a whole. Residents did, however, make more sustainable commuting trips than the population in general. Sustainable modes of travel were related to urban design features including secured bike storage, high connectivity of the neighborhoods to the nearby area, natural surveillance, high quality public realm and traffic calming. Likewise the provision of facilities within and nearby the development encouraged high levels of walking.  相似文献   

16.
The aim of the study was to investigate the perceived usefulness of various types of in-vehicle feedback and advice on fuel efficient driving. Twenty-four professional truck drivers participated in a driving simulator study. Two eco-driving support systems were included in the experiment: one that provided continuous information and one that provided intermittent information. After the simulator session, the participants were interviewed about their experiences of the various constituents of the systems. In general, the participants had a positive attitude towards eco-driving support systems and behavioural data indicated that they tended to comply with the advice given. However, different drivers had very different preferences with respect to what type of information they found useful. The majority of the participants preferred simple and clear information. The eco-driving constituents that were rated as most useful were advice on gas pedal pressure, speed guidance, feedback on manoeuvres, fuel consumption information and simple statistics. It is concluded that customisable user interfaces are recommended for eco-driving support systems for trucks.  相似文献   

17.
This study is aimed at finding independent measures to describe the dimensions of urban driving patterns and to investigate which properties have main effect on emissions and fuel-use. 62 driving pattern parameters were calculated for each of 19 230 driving patterns collected in real traffic. These included traditional driving pattern parameters of speed and acceleration and new parameters of engine speed and gear-changing behaviour. By using factorial analysis the initial 62 parameters were reduced to 16 independent driving pattern factors. Fuel-use and emission factors were estimated for a subset of 5217 cases using two different mechanistic instantaneous emission models. Regression analysis on the relation between driving pattern factors and fuel-use and emission factors showed that nine of the driving pattern factors had considerable environmental effects. Four of these are associated with different aspects of power demand and acceleration, three describe aspects of gear-changing behaviour and two factors describe the effect of certain speed intervals.  相似文献   

18.
Abstract

This paper attempts to propose a framework on driving cycle development based on a thorough review of 101 transient driving cycles. A comparison of the driving cycles highlighted that Asian driving is the slowest but most aggressive while European driving is the fastest and smoothest. Further review of the cycle development methodologies identified three major elements for developing a driving cycle; test route selection, data collection and cycle construction methods. A framework was eventually proposed based on these findings and recommendations from this review. First, traffic activity patterns and quantitative statistics should be considered in determining the test routes. Speed data can be collected by using chase car method, on‐board measurement techniques or their hybrid. As for the construction of driving cycle, the matching approach has been more commonly used. It is recommended that the tendency of zero change in acceleration, which has been commonly ignored in the literature, and the application of succession probability at second‐by‐second level should be further explored. A fifth mode, creeping, is also recommended for modal analysis for characterizing urban congested driving conditions.  相似文献   

19.
Knowledge of the driving cycle is an important requirement in the evaluation of exhaust emissions. Data were collected from trips performed on five routes between the home addresses in the surrounding areas and place of work at Napier University in Edinburgh. A real world Edinburgh motorcycle driving cycle (EMDC) is developed for each of the urban and rural roads, using this data. Forty-four trips were made on the routes in both urban and rural areas. We assess motorcycle speed, percentage time spent in cruise, accelerations, decelerations and idling and their statistical validity over trip lengths. The results show that EMDC has a cycle length of 770 and 656 s for urban and rural trips, which are higher than those of the European Commission’s driving cycle for cars used for emission estimations of motorcycles. Time spent in acceleration and deceleration modes of EMDC are found to be significantly higher than in other driving cycle studies, reflecting diverse driving conditions in Edinburgh.  相似文献   

20.
The UK National Cycle Network comprises 23,660 km of cycling and walking paths of which a significant percentage is dedicated off-road infrastructure. This represents a significant civil engineering infrastructure asset that currently contributes to the provision of a sustainable transport mode option nationwide. Commuting and recreational cyclists have observed the often hazardous conditions on these paths. There are various simple measures that could be taken to improve the maintenance of such off-road paths. Reliance on walk-over surveys (direct visual inspection) and path users notifying the local authority may not be tackling maintenance in a resource efficient manner. The proposed inspection method includes the use of an instrumented bicycle to examine cycle path condition through user perception of satisfaction and quality. A questionnaire was conducted to identify the attributes of off-road cycling infrastructure people find most important in relation to their personal satisfaction. An exploratory factor analysis was undertaken on perception study data to elucidate the determination of the variables associated with perceived user satisfaction. The study has shown that people find maintenance issues to be of high importance, especially surface issues. From exploratory factor analysis of results, satisfaction has been found to load with comfort and safety. Field testing was then conducted using subjective user opinions and objective vibration data. These results were then used to assist the creation of dedicated user perception based surface condition rating-scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号