首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Railway rapid transit systems are key stones for the sustainability of mass transit in developed countries. The overwhelming majority of these railway systems are direct-current (DC) electrified and several energy-saving techniques have been proposed in the literature for these systems. The use of regenerative-braking in trains is generally recognised as the main tool to improve the efficiency of DC-electrified mass transit railway systems but the energy recovered in braking cannot always be handled efficiently, above all in low traffic-density situations. Several emerging technologies as energy storage systems or reversible traction substations have the potential for making it possible to efficiently use train-braking. However, a systematic evaluation of their effect is missing in the literature.In this paper, a deep, rigorous and comprehensive study on the factors which affect energy issues in a DC-electrified mass transit railway system is carried out. This study clarifies what the actual potential is for energy saving in each situation. Then, a methodology to asses several energy-saving techniques to improve energy efficiency in DC-electrified mass transit systems is presented, constituting the main contribution of this paper. This methodology has been conceived to help operators in assessing the effect of railway-infrastructure emerging technologies in transit systems, so making it possible to shape planning, capacity, etc. It is stepped out in three basic movements. First of all, a traffic-density scan analysis is conducted in order to clarify the effect of the headway on system behaviour. Secondly, several traffic-density scenarios are simulated for a set of infrastructure-expanded cases. Finally, annual energy saving is evaluated by applying a realistic operation timetable. This methodology has been applied to a case study in Madrid Metro (Spain) to illustrate the steps of its application and the effect of several energy-saving techniques on this specific system. Results confirm that regenerative braking generally leads to an important increase of system energy efficiency – especially at high traffic-density scenarios. It has also been proved that infrastructure improvements can also contribute to energy savings and their contributions are more significant at low traffic densities. Annual energy results have been obtained, which may lead to investment decisions by carrying out an appropriate economic assessment based on cost analysis.The main results of the study presented here are likely to apply to other electric traction systems, at least qualitatively.  相似文献   

2.
Regenerative braking is an energy recovery mechanism that converts the kinetic energy during braking into electricity, also known as regenerative energy. In general, most of the regenerative energy is transmitted backward along the pantograph and fed back into the overhead contact line. To reduce the trains’ energy consumption, this paper develops a scheduling approach to coordinate the arrivals and departures of all trains located in the same electricity supply interval so that the energy regenerated from braking trains can be more effectively utilized to accelerate trains. Firstly, we formulate an integer programming model with real-world speed profiles to minimize the trains’ energy consumption with dwell time control. Secondly, we design a genetic algorithm and an allocation algorithm to find a good solution. Finally, we present numerical examples based on the real-life operation data from the Beijing Metro Yizhuang Line in Beijing, China. The results show that the proposed scheduling approach can reduce energy consumption by 6.97% and save about 1,054,388 CNY (or 169,223 USD) each year in comparison with the current timetable. Compared to the cooperative scheduling (CS) approach, the proposed scheduling approach can improve the utilization of regenerative energy by 36.16% and reduce the total energy consumption by 4.28%.  相似文献   

3.
This paper analyzes the influence of transient operating modes in the Cat 3512B-HD and MTU 4000 R41 locomotive diesel engines on their energy usage. This analysis represents an integral component of the technological research and development performed at Lietuvos Geležinkeliai AB (JSC Lithuanian Railways) with the objective of increasing the efficiency of freight transportation with the upgraded 2M62M and modern ER20CF/2ER20CF diesel locomotives. The influence of transient modes on the operating variables of the locomotive diesel engines was evaluated under operational load-cycling conditions to aid in the selection of appropriate parameters (e.g., the train weight, the diesel locomotive type, and the technical characteristics of the diesel locomotive to be modeled) for freight transportation on Lithuanian railway lines. It was determined that the engine’s electronic control system compensates for the negative effects of transient operations on the engine’s energy usage. As a result, the increase in fuel consumption is less than 3% during transient operation when compared to steady-state operation. Through this research, methodological foundations have been formulated and adapted for the use of the mathematical modeling of the transient modes of locomotive diesel engines to optimize freight transportation, resulting in an expected decrease of 10–15% in fuel consumption.  相似文献   

4.
This paper proposes a novel approach to solve the complex optimal train control problems that so far cannot be perfectly tackled by the existing methods, including the optimal control of a fleet of interacting trains, and the optimal train control involving scheduling. By dividing the track into subsections with constant speed limit and constant gradient, and assuming the train’s running resistance to be a quadratic function of speed, two different methods are proposed to solve the problems of interest. The first method assumes an operation sequence of maximum traction – speedholding – coasting – maximum braking on each subsection of the track. To maintain the mathematical tractability, the maximum tractive and maximum braking functions are restricted to be decreasing and piecewise-quadratic, based on which the terminal speed, travel distance and energy consumption of each operation can be calculated in a closed-form, given the initial speed and time duration of that operation. With these closed-form expressions, the optimal train control problem is formulated and solved as a nonlinear programming problem. To allow more flexible forms of maximum tractive and maximum braking forces, the second method applies a constant force on each subsection. Performance of these two methods is compared through a case study of the classic single-train control on a single journey. The proposed methods are further utilised to formulate more complex optimal train control problems, including scheduling a subway line while taking train control into account, and simultaneously optimising the control of a leader-follower train pair under fixed- and moving-block signalling systems.  相似文献   

5.
在长输管线中,泵站是输油系统中必不可少的部分,而且泵站的运行成本巨大。工况处于经常变化的输油系统是极为普遍的,在这些系统中,通常采用的节流调节法浪费能量。如果能很好地使用变频调速系统,能实现泵站的优化运行。文中介绍了泵机组变频节能工艺理论以及比例定律和相似抛物线的基本原理,并对调速后泵的转速和轴功率进行了计算,进行定速泵与变速泵串联运行试验,并比较了不同操作方式的能耗。  相似文献   

6.
Energy-efficient operation of rail vehicles   总被引:1,自引:0,他引:1  
This paper describes an analytical process that computes the optimal operating successions of a rail vehicle to minimize energy consumption. Rising energy prices and environmental concerns have made energy conservation a high priority for transportation operations. The cost of energy consumption makes up a large portion of the Operation and Maintenance (O&M) costs of transit especially rail transit systems. Energy conservation or reduction in energy cost may be one of the effective ways to reduce transit operating cost, therefore improve the efficiency of transit operations.From a theoretical point of view, the problem of energy efficient train control can be formulated as one of the functions of Optimal Control Theory. However, the classic numerical optimization methods such as discrete method of optimum programming are too slow to be used in an on-board computer even with the much improved computation power, today. The contribution of this particular research is the analytical solution that gives the sequence of optimal controls and equations to find the control change points. As a result, a calculation algorithm and a computer program for energy efficient train control has been developed. This program is also capable of developing energy efficient operating schedules by optimizing distributions of running time for an entire route or any part of rail systems.We see the major application of the proposed algorithms in fully or partially automated Train Control Systems. The modern train control systems, often referred as “positive” train control (PTC), have collected a large amount of information to ensure safety of train operations. The same data can be utilized to compute the optimum controls on-board to minimize energy consumption based on the algorithms proposed in this paper. Most of the input data, such as track plan, track profile, traction and braking characteristics, speed limits and required trip time are located in an on-board database and/or they can be transmitted via radio link to be processed by the proposed algorithm and program.  相似文献   

7.
Although people are often encouraged to use public transportation, the riding experience is not always comfortable. This study uses service items to measure passenger anxieties by applying a conceptual model based on the railway passenger service chain perspective. Passenger anxieties associated with train travel are measured using a modern psychometric method, the Rasch model. This study surveys 412 train passengers. Analytical results indicate that the following service items cause passenger anxiety during trains travel: crowding, delays, accessibility to a railway station, searching for the right train on a platform, and transferring trains. Empirical results obtained using the Rasch approach can be used to derive an effective strategy to reduce train passenger anxiety. This empirical study also demonstrates that anxiety differs based on passenger sex, age, riding frequency, and trip type. This information will also prove useful for transportation planners and policy-makers when considering the special travel needs of certain groups to create a user-friendly railway travel environment that promotes public use.  相似文献   

8.
Several electrification systems based on renewable energy power sources (first of all, solar energy) are discussed in respect to their applicability to railway transport and, in particular, to suburban electric trains. Two systems are considered with basic technical details and economic estimation, both including the onboard bank of batteries and the photovoltaic converters (PVC) of solar energy for compensation of energy expenses, which could be positioned either on stations or on wagon's roofs. Sun‐tracking systems and their effect on the solar energy conversion efficiency are discussed in application to stationary and moving PVC platforms. An analysis made shows that introduction of the “green” systems discussed will not only have positive ecological impact, but also can bring a notable economical effect even with today's components, while it could be considerably greater with the usage of new PVCs, which are being developed by the authors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Urban public transport energy use is determined largely by the weight of the vehicle, and frequency of intermediate stops, imposing repeated acceleration/steady running/braking cycles, in which much of the kinetic energy is dissipated. Energy consumed for the same capacity and vehicle performance may be reduced by coasting, cutting vehicle weight, and use of regenerative braking, on electrically‐powered systems, to convert the otherwise wasted braking energy into useful form. Particular attention is paid to the last‐named, identifying results of past experience and recent simulations. Practical constraints limiting the amount of energy actually recovered are discussed, including proportion of vehicle weight braked electrically, receptivity of the supply system, stop spacing and number of vehicles operated simultaneously. Reference is also made to battery vehicles and flywheel energy storage.

It is suggested that considerable scope exists in urban electric rail operation for reduced energy consumption, as existing fleets are replaced by lighter weight vehicles, fitted for regenerative braking. Further savings may come from use of inverter equipment. Rate of fleet renewal may be an important factor. Buses are already much more energy efficient, and dramatic gains are unlikely. However, there is some scope for use of flywheel energy storage, and regenerative braking on trolleybuses.  相似文献   

10.
目前我国高速铁路的日间行车能力已得到了较为充分的利用,而如何组织好高铁夜间垂直天窗与夜行列车之间的耦合关系、用好高铁夜间能力,是适应多样化市场需求的需要,也是进一步提升高铁经营效益的有效途径。对此,本文提出了动卧列车和货运动车组两种相对可行的高铁夜间运输产品,分别对其产品特征进行了分析,充分考虑高铁夜间天窗制约下两种列车的开行模式,基于市场需求提出了列车开行策略,并在充分对比两种产品的经济效益、客(货)源组织、能力分配等因素的基础上,给出了高铁夜间能力发展建议。  相似文献   

11.
In order to reduce energy use and cut emissions that contribute to climate change, countries need to radically reinvent their fossil-fuel intensive transportation systems. As a major consumer of energy and contributor to greenhouse gas (GHG) emissions, the U.S. transportation sector faces extraordinary challenges in the twenty-first century. Transportation in the U.S. depends heavily on fossil-fuel dependent cars and planes to the near exclusion of more energy-efficient electric trains. In order to address this concern, some policy makers refer to “technological optimism” which seeks no systemic change but instead focuses on employing technology to reduce the energy demand and environmental impact of the status quo. On the other hand, some researchers suggest a systematic paradigm shift away from cars and planes to intermodal systems that improve the sustainability of the system as a whole. High-speed rail (HSR) is arguably such an investment that can further this shift and help to achieve a more diversified and balanced transportation system. In this respect, by largely examining the role of the U.S. cars and planes “culture” in the economy, this paper elaborates on how building a HSR system may help U.S. advance towards environmental sustainability in transportation, make a break from the status quo, and create a more balanced, multimodal transportation system that will improve the quality and efficiency of travel.  相似文献   

12.
Energy efficient techniques are receiving increasing attention because of rising energy prices and environmental concerns. Railways, along with other transport modes, are facing increasing pressure to provide more intelligent and efficient power management strategies.This paper presents an integrated optimization method for metro operation to minimize whole day substation energy consumption by calculating the most appropriate train trajectory (driving speed profile) and timetable configuration. A train trajectory optimization algorithm and timetable optimization algorithm are developed specifically for the study. The train operation performance is affected by a number of different systems that are closely interlinked. Therefore, an integrated optimization process is introduced to obtain the optimal results accurately and efficiently.The results show that, by using the optimal train trajectory and timetable, the substation energy consumption and load can be significantly reduced, thereby improving the system performance and stability. This also has the effect of reducing substation investment costs for new metros.  相似文献   

13.
Because of different geo‐demographic and economic conditions, the impact of the new passenger modes (road and air) on rail travel was much larger in North America than in Europe. In 1960s and 1970s, as the railway share of intercity traffic in North America shrunk to a negligible one or two percent, the passenger trains were abandoned by private railway companies and taken over by state organizations, which have continued to operate traditional trains and generate mounting losses. On the technology side, no attempts have been made to improve competitiveness of trains vis‐a‐vis automobiles and airplanes.

In Europe and Japan, the railways responded to the challenge by (i) upgrading the performance (speed) and comfort of traditional trains operating on existing tracks and (ii) developing trains which could, on short and intermediate range distances, compete successfully, in terms of speed and economy, with the road and air modes. The Japanese (Shinkansen trains) and French (TGV trains) experience clearly shows that trains operating on dedicated lines at average speeds of 150 to 200 km/hr provide a superior transportation service and economy on high‐traffic intercity routes of up to about 500 km length. In this paper the factors responsible for the present status of passenger rail in North America are analysed, the current policies in the U.S. and Canada are evaluated in the light of experience to date and developments abroad, and suggestions for a long‐term passenger rail policy are made. This includes examination of (i) the viability of continued subsidization of traditional train services, (ii) the viability of operation of faster trains on existing tracks, (iii) the scope for introduction of modern, fast trains on dedicated lines in high‐density, intercity corridors, (iv) the application of fast trains as access to major airports and integration of airports with fast intercity lines, and (v) the impact of energy (oil) consumption in transportation.

  相似文献   

14.
In this paper an operation mode which is based on the stop-skipping approach is studied in urban railway lines under uncertainty. In this mode, each train follows a specific stop schedule. Trains are allowed to skip any intermediate stations to increase the commercial speed and to save energy consumption. As the commercial speed increases, the number of required trains in operation reduces and results eliminating unnecessary costs. To that end, a new mathematical model is proposed to reach the optimum stop schedule patterns. In the planning step, based on the traffic studies, the headway distributions are computed for different weekdays, and holidays. However, in practice, because of many unexpected events, the traffic may alter from what is planned. Therefore, in this condition, a robust plan is required that is optimized and immunized from uncertainty. In this paper, a new robust mathematical model, as well as two heuristic algorithms including (1) a decomposition-based algorithm and (2) a Simulated Annealing (SA) based algorithm is proposed. Finally, an Iranian metro line is studied and the optimum patterns are presented and analyzed.  相似文献   

15.
Short-term passenger flow forecasting is a vital component of transportation systems. The forecasting results can be applied to support transportation system management such as operation planning, and station passenger crowd regulation planning. In this paper, a hybrid EMD-BPN forecasting approach which combines empirical mode decomposition (EMD) and back-propagation neural networks (BPN) is developed to predict the short-term passenger flow in metro systems. There are three stages in the EMD-BPN forecasting approach. The first stage (EMD Stage) decomposes the short-term passenger flow series data into a number of intrinsic mode function (IMF) components. The second stage (Component Identification Stage) identifies the meaningful IMFs as inputs for BPN. The third stage (BPN Stage) applies BPN to perform the passenger flow forecasting. The historical passenger flow data, the extracted EMD components and temporal factors (i.e., the day of the week, the time period of the day, and weekday or weekend) are taken as inputs in the third stage. The experimental results indicate that the proposed hybrid EMD-BPN approach performs well and stably in forecasting the short-term metro passenger flow.  相似文献   

16.
Eco-driving is an energy efficient traffic operation measure that may lead to important energy savings in high speed railway lines. When a delay arises in real time, it is necessary to recalculate an optimal driving that must be energy efficient and computationally efficient.In addition, it is important that the algorithm includes the existing uncertainty associated with the manual execution of the driving parameters and with the possible future traffic disturbances that could lead to new delays.This paper proposes a new algorithm to be executed in real time, which models the uncertainty in manual driving by means of fuzzy numbers. It is a multi-objective optimization algorithm that includes the classical objectives in literature, running time and energy consumption, and as well a newly defined objective, the risk of delay in arrival. The risk of delay in arrival measure is based on the evolution of the time margin of the train up to destination.The proposed approach is a dynamic algorithm designed to improve the computational time. The optimal Pareto front is continuously tracked during the train travel, and a new set of driving commands is selected and presented to the driver when a delay is detected.The algorithm evaluates the 3 objectives of each solution using a detailed simulator of high speed trains to ensure that solutions are realistic, accurate and applicable by the driver. The use of this algorithm provides energy savings and, in addition, it permits railway operators to balance energy consumption and risk of delays in arrival. This way, the energy performance of the system is improved without degrading the quality of the service.  相似文献   

17.
确定合理的高铁车站接车进路长度对压缩到达追踪间隔时间有重要意义。本文首先通过构建满足到达追踪间隔时间的高铁车站接车进路长度计算模型,提出了接车进路长度的主要影响因素为由线路限制速度、站前坡坡度、制动力使用系数三因素(简称三因素)所确定的车载设备监控制动距离内列车运行时间。然后,通过对常见的线路限制速度、站前坡坡度、制动力使用系数取值下的车载设备监控制动距离内列车运行时间进行牵引计算仿真,并运用三因素方差分析法分析了三因素的影响显著度,得到了线路限制速度、站前坡坡度对高铁车站接车进路长度影响显著的结论。最后,基于高铁车站接车进路长度计算模型,得到了一组指定到达追踪间隔下的高铁车站接车进路长度表,为高铁车站设计提供思路。  相似文献   

18.
19.
In a heavily congested metro line, unexpected disturbances often occur to cause the delay of the traveling passengers, infeasibility of the current timetable and reduction of the operational efficiency. Due to the uncertain and dynamic characteristics of passenger demands, the commonly used method to recover from disturbances in practice is to change the timetable and rolling stock manually based on the experiences and professional judgements. In this paper, we develop a stochastic programming model for metro train rescheduling problem in order to jointly reduce the time delay of affected passengers, their total traveling time and operational costs of trains. To capture the complexity of passenger traveling characteristics, the arriving ratio of passengers at each station is modeled as a non-homogeneous poisson distribution, in which the intensity function is treated as time-varying origin-to-destination passenger demand matrices. By considering the number of on-board passengers, the total energy usage is modeled as the difference between the tractive energy consumption and the regenerative energy. Then, we design an approximate dynamic programming based algorithm to solve the proposed model, which can obtain a high-quality solution in a short time. Finally, numerical examples with real-world data sets are implemented to verify the effectiveness and robustness of the proposed approaches.  相似文献   

20.
An examination of the relationship between energy supplies and transportation systems indicates that a major confrontation is forthcoming. Predictions of the world's petroleum supplies and the primary dependence of transportation systems on petroleum show that there will be a depletion of these supplies in the next 50 years unless major changes in transportation and energy planning and policy making are forthcoming. A closer examination of specific transportation systems through the use of the transportation/ energy efficiency indicates that automobiles, aircraft and intercity trucking are most inefficient on a mobility per unit of petroleum basis. Recommendations on the difficult problem of how to account for the depletion characteristics of transportation systems are given. These include coordinated transportation and energy planning, restricted petroleum and transportation toll and tax rates, research and development on propulsion systems less dependent on petroleum, and a shifting of emphasis to higher transportation/energy efficiency systems such as compact automobiles, buses and trains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号