首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电动汽车在交流充电开始时可以通过车辆VCU输出PWM信号,不同的PWM占空比信号代表被传输信号的开始、结束、传输、校验等内容,并利用CP控制导引回路发送给充电桩,交流充电桩收到PWM信号后开始接收并解析。通过此方法可以实现充电桩和充电车辆的配对信息进行管控,有利于充电桩和车辆的充电运营管理。  相似文献   

2.
利用交流充电桩,为电动汽车充电提出了一种全新的方案。该充电方案是将交流充电桩的多个控制单元集中放置在一个控制柜内,做到控制部分的集中化管理,而每个充电枪头则作为控制柜的一个分支,这样就可以从该控制柜内引出多个分支,每个分支只需要引出一个充电枪头,连接线缆再配上一个充电枪头挂板支架,即可满足给电动汽车充电的功能,省去了单个交流充电桩的构建。同时,提供了该系统的硬件设计框架、各充电桩之间的通信电路以及软件的控制流程。  相似文献   

3.
全球范围内目前主要拥有 3 种交流充电桩的标准体系,分别是中国市场的《电动汽车传导充电系统 第 1 部分:通用要求》(GB/T 18487.1—2015)、欧洲市场的《电动汽车传导充电系统 第 1 部分:通用要求》(IEC 61851-1:2017)及美国和日本等市场的《电动汽车和插电式混合动力电动汽车充电连接器》(SAE J1772 OCT 2017)。不同类型的交流充电桩能否兼容是电动汽车行业内关注的重点。通过对不同地区充电桩相关标准的解读,分别从充电接口结 构、标准及认证方案,以及控制导引等方面给出了 3 种类型充电桩标准的差异点和相同点;提出了交流充电桩主要在智能充电模块、剩余电流保护器(RCD)和电动汽车给电网送电技术(V2G)等方面的发展趋势。相关结论可为充电桩企业的规划设计和检测机构的检测平台搭建提供参考。  相似文献   

4.
随着近年来低碳能源的发展,特别是在运输业当中,重型电动卡车越来越受到人们的追捧。然而重型电动卡车能否正常充电直接影响着客户日常运营。文章首先介绍了直流充电系统的组成、导引原理以及控制策略和顺序,在此基础上针对直流(DC)充电异常问题,从车辆与充电桩之间的通信异常、连接异常和车辆高压绝缘问题三个方面展开了论述,并结合在实际工作中车辆调试、维修过程出现的一些故障情况,对其进行分析,最终提出了重型电动卡车直流充电故障诊断维修的方法和见解,希望能为广大重型电动卡车用户和维修人员提供帮助。  相似文献   

5.
为了将车载端与地面端充电设施统一起来,实现不同电动汽车与不同地面端充电桩之间高效、安全地进行无线充电,保证无线通信协议的一致性至关重要。本文首先对新颁布的电动汽车无线充电系统通信协议标准GB/T 38775.2-2020进行解读,梳理得到电动汽车无线充电通信的一般流程;然后,设计了一种电动汽车无线充电通信一致性测试的软硬件架构;最后,提出了电动汽车无线充电通信协议的一致性测试方法。该系统能够完成电动汽车无线充电过程中通信协议的自动化测试,有助于后续标准的修订和测试的进一步完善。  相似文献   

6.
电动汽车交流充电设施涉及电网、充电桩和车辆三方面,电能质量、充电设施和车载充电装置的性能、充电通信兼容性等均会影响充电过程,其中,电能质量对电动汽车充电系统的影响,在现有国家标准中,并未做出详细规定。通过对国内充电桩、充电站基数较大、具有一定代表性的城市进行电能质量调查、采集,分析所采集城市的电能质量相关具体数据,总结存在的电能质量问题,研究对电动汽车充电过程的影响。  相似文献   

7.
电动汽车充电系统是维持电动汽车运行的能源补给设施,是从供电电源提取能量对动力电池充电时使用的有特定功能的电力转换装置。主要包括交流(慢速)充电系统和直流(快速)充电系统。慢速充电系统通过慢速充电线束(充电桩慢速充电线束或家用慢速充电线束)与交流充电桩或220V家用交流插座相连,为动力蓄电池充电;慢速充电系统将220V交流电转化为直流电,实现电动汽车动力蓄电池的电能补给。  相似文献   

8.
发展新能源汽车的关键问题之一就是解决其在使用过程中的充电问题。本研究针对充电较快的直流充电过程中车辆与非车载充电机的CAN通信网络的稳定性,从通信数据完整性、灵敏性以及抗扰性3个方面,设计了测试方案并进行测试分析,得出结论:所选测试样品在未加干扰时均可保证通信数据的完整性,并均可在指定时间内响应对方的通信数据并回复,灵敏性会随着车辆或者充电桩控制充电系统其他部件的增加而变弱;可承受一定程度的浪涌冲击和传导抗扰,但随着干扰等级的增加,通信品质变差,通信中出现的错误增加。建议后面围绕软件干扰、增加浪涌冲击以及传导抗扰等级、围绕通信系统本身硬件情况开展相关研究工作。  相似文献   

9.
钱婷婷 《人民公交》2023,(11):70-71
随着新能源汽车产业蓬勃发展和新能源车辆保有量高速增长,充电设施建设已成为推动绿色出行的重要一环。温州市政府也出台了相关文件鼓励充电桩下乡,加快布局各地充电桩建设,完成充电基础设施网络提档升级和优化加密。温州交运集团能源有限公司(以下简称“能源公司”)深耕充电业务市场近7年,通过与全国充电头部企业交流、学习、消化吸收.  相似文献   

10.
考虑到传统车桩比的充电桩数量规划方法的局限性,通过大量实地调研,结合各领域车辆保有量预测数据、用户充电画像和充电桩全生命周期经济性,提出一种同时兼顾用户日均充电量需求、各领域车辆充电功率、运营商经济性的充电桩规划策略。对充电桩数量和功率进行科学测算,确保规划的充电桩可满足用户充电需求,同时降低充电桩配置成本,从而为政府规划充电桩功率和数量提供理论支撑,推动充电市场常态化发展。  相似文献   

11.
一辆2016款比亚迪E5纯电动汽车,行驶18500公里,使用期1年。车辆在快充充电桩进行充电时车内仪表显示充电枪已插入并亮起充电指示灯,但充电电量不上升,更换多个直流充电桩故障依旧,该车使用交流充电桩充电正常,该车开到汽车修理厂进行维修,经过多天维修无法排除故障。  相似文献   

12.
充电电缆包含"电缆内部控制和保护装置"(IC-CPD).为满足IEC61851的安全规定,集成了一个接地故障断路器和一个通信装置(脉冲宽度调制模块)来设定电源.为保护用户和电动车辆,IC-CPD固定在充电电缆中,开闭车辆插入式连接和设施之间的电源触点,并将充电电流上限传送至车辆.如果出现故障或存在电压下降,则立即中断充电过程.充电电缆仅在车辆请求电压后才开闭车辆插入式连接和防触电插头之间的电源触点.未插入的连接器则会断电.  相似文献   

13.
<正>故障现象一辆2021款大众ID.4纯电动车,累计行驶里程约为5 600 km。车主反映,使用直流充电桩可以给车辆充电;使用交流充电墙盒给车辆充电,插上充电枪后,充电插座指示灯呈红色长亮,充电无法进行,同时车载信息系统显示屏上出现“请拔下充电电缆然后重新连接”的故障提示。故障诊断接车后,用故障诊断仪(VAS6150E)检测,在高电压蓄电池充电装置内存储有故障代码“P0E5F00蓄电池充电器充电插座1温度过高”(图1)。读取高电压蓄电池充电装置数据流,发现交流充电插座的温度显示为115.4℃(图2)。找来一辆正常车,  相似文献   

14.
(接上期) 5.快充系统工作原理 (1)快充系统各元件的作用 快充系统如图17所示,下面介绍充电桩、快充口、车辆的各部件作用. ①充电桩 主电源开关:接通或断开充电机供电. 充电机:将交流380V或220V变成高压直流. 电流传感器:监测充电电流. 高压继电器:接通或断开充电主回路. 电压传感器:监测充电电压. 高压绝...  相似文献   

15.
无线充电线圈的互操作性是智能道路无线充电系统的关键性能指标。为分析耦合线圈的互操作性,首先建立了无线充电系统及耦合线圈的仿真模型,选取了3种不同形状和对应尺寸的线圈作为发射线圈和接收线圈,利用COMSOL Multiphysics有限元仿真软件,分别分析了不同形状和尺寸以及不同组合形式线圈对无线电能传输系统效率和耦合线圈互操作性的影响。另外,采用MATLAB/Simulink对无线充电系统的传输效率进行了仿真分析。为验证仿真结果的准确性,对无线电能传输的试验装置进行了测试验证。研究结果表明:随着线圈传输间距的不断增加,线圈的自感不变而互感不断降低,同时其耦合系数和系统的输出效率也会随之减小;圆形线圈的互操作性优于方形线圈,其中方形-方形耦合线圈互操作性最差,圆形-圆形耦合线圈互操作性最优,其最大传输间距提升9%~12%;大尺寸线圈的互操作性优于小尺寸线圈,且线圈尺寸的变化对于互操作性的影响大于线圈形状。研究结果为智能道路无线充电系统设计提供了理论依据。  相似文献   

16.
<正>比亚迪e2无法直流快充Q一辆2019年款的比亚迪e2电动车,长期以来都是在住宅小区里充电,行驶一直正常。近日发生追尾事故后做了钣金和喷漆修复,在修理厂停放了三天,想要使用直流快充充电桩充电,却发现无法充电,更换其他快充充电桩仍然无法充电,只得使用交流充电桩充电。车辆启动和行驶均正常。请老师帮忙分析,此车为什么不能快充呢?故障可能出在何处?谢谢!  相似文献   

17.
1摩托车充电系统的工作方式摩托车电气系统主要由电源设备、用电设备及其连接线路组成,其中电源设备及其连接线路构成了摩托车重要的充电系统。充电系统在摩托车运行中,担负着向全车电气设备提供电力支持和给蓄电池充电的重要任务,车辆充电系统工作质量的好坏直接关系到全车用电设备能否正常工作和车辆能否安全运行。国产中、小排量摩托车的充电系统配置使用了永磁  相似文献   

18.
针对大功率车载充电技术,提出了一种纯电动汽车交流充电策略,着重说明上下电流程,并且对电子锁控制进行详细的介绍。最后阐述了交流充电安全应对措施,为纯电动车辆提供一种交流充电的解决方案。  相似文献   

19.
<正>故障现象一辆2020年产的北京现代菲斯塔纯电动汽车,搭载了EM13型135kW的永磁同步驱动电机,VIN码为LBES6AXD1KW00****,行驶里程为9129km。车主反映该车高压蓄电池快充(直流)充电正常,慢充(交流)无法充电。故障诊断与排除检修该车慢充无法充电故障前,分别使用了随车配备的慢充便携式充电线(ICCB)和慢充固定式充电桩对车辆高压蓄电池进行慢充充电,结果均无法充电。在连接慢充充电枪后,  相似文献   

20.
戚猛 《汽车维修》2023,(3):12-17
<正>一、概述充电桩直流端:直流充电桩俗称“快充”。供电端是交流电,通过整流器、滤波器改变成直流电为电池充电。直流充电桩连接的是交流380V频率为50HZ,输出为直流电。直流充电桩功率和输出电压、电流要求严格,所以对导线要求很高。必须使用三相四线制才能满足直流快充需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号