首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a transit network optimization method, in which travel time reliability on road is considered. A robust optimization model, taking into account the stochastic travel time, is formulated to satisfy the demand of passengers and provide reliable transit service. The optimization model aims to maximize the efficiency of passenger trips in the optimized transit network. Tabu search algorithm is defined and implemented to solve the problem. Then, transit network optimization method proposed in this paper is tested with two numerical examples: a simple route and a medium-size network. The results show the proposed method can effectively improve the reliability of a transit network and reduce the travel time of passengers in general.  相似文献   

2.
Mind the map! The impact of transit maps on path choice in public transit   总被引:2,自引:0,他引:2  
This paper investigates the impact of schematic transit maps on passengers’ travel decisions. It does two things: First, it proposes an analysis framework that defines four types of information delivered from a transit map: distortion, restoration, codification, and cognition. It then considers the potential impact of this information on three types of travel decisions: location, mode, and path choices.1 Second, it conducts an empirical analysis to explore the impact of the famous London tube map on passengers’ path choice in the London Underground (LUL). Using data collected by LUL from 1998 to 2005, the paper develops a path choice model and compares the influence between the distorted tube map (map distance) and reality (travel time) on passengers’ path choice behavior. Results show that the elasticity of the map distance is twice that of the travel time, which suggests that passengers often trust the tube map more than their own travel experience on deciding the “best” travel path. This is true even for the most experienced passengers using the system. The codification of transfer connections on the tube map, either as a simple dot or as an extended link, could affect passengers’ transfer decisions. The implications to transit operation and planning, such as trip assignments, overcrowding mitigation, and the deployment of Advanced Transit Information System (ATIS), are also discussed.  相似文献   

3.
This paper proposes a frequency-based assignment model that considers travellers probability of finding a seat in their perception of route cost and hence also their route choice. The model introduces a “fail-to-sit” probability at boarding points with travel costs based on the likelihood of travelling seated or standing. Priority rules are considered; in particular it is assumed that standing on-board passengers will occupy any available seats of alighting passengers before newly boarding passengers can fill any remaining seats. At the boarding point passengers are assumed to mingle, meaning that FIFO is not observed, as is the case for many crowded bus and metro stops, particularly in European countries. The route choice considers the common lines problem and an user equilibrium solution is sought through a Markov type network loading process and the method of successive averages. The model is first illustrated with a small example network before being applied to the inner zone of London’s underground network. The effect of different values passengers might attach to finding a seat are illustrated. Applications of the model for transit planning as well as for information provision at the journey planner stage are discussed.  相似文献   

4.
Recent investment in urban ferry transport has created interest in what value such systems provide in a public transport network. In some cases, ferry services are in direct competition with other land-based transport, and despite often longer travel times passengers still choose water transport. This paper seeks to identify a premium attached to urban water transit through an identification of excess travel patterns. A one-month sample of smart card transaction data for Brisbane, Australia, was used to compare bus and ferry origin–destination pairs between a selected suburban location and the central business district. Logistic regression of the data found that ferry travel tended towards longer travel times (OR?=?2.282), suggesting passengers do derive positive utility from ferry journeys. The research suggests the further need to incorporate non-traditional measures other than travel time for deciding the value of water transit systems.  相似文献   

5.
In this paper, we propose a new schedule-based equilibrium transit assignment model that differentiates the discomfort level experienced by sitting and standing passengers. The notion of seat allocation has not been considered explicitly and analytically in previous schedule-based frameworks. The model assumes that passengers use strategies when traveling from their origin to their destination. When loading a vehicle, standing on-board passengers continuing to the next station have priority to get available seats and waiting passengers are loaded on a First-Come-First-Serve (FCFS) principle. The stimulus of a standing passenger to sit increases with his/her remaining journey length and time already spent on-board. When a vehicle is full, passengers unable to board must wait for the next vehicle to arrive. The equilibrium conditions can be stated as a variational inequality involving a vector-valued function of expected strategy costs. To find a solution, we adopt the method of successive averages (MSA) that generates strategies during each iteration by solving a dynamic program. Numerical results are also reported to show the effects of our model on the travel strategies and departure time choices of passengers.  相似文献   

6.
The transit network design problem is concerned with the finding of a set of routes with corresponding schedules for a public transport system. This problem belongs to the class of NP-Hard problem because of the vast search space and multiple constraints whose optimal solution is really difficult to find out. The paper develops a Population based model for the transit network design problem. While designing the transit network, we give preference to maximize the number of satisfied passengers, to minimize the total number of transfers, and to minimize the total travel time of all served passengers. Our approach to the transit network design problem is based on the Genetic Algorithm (GA) optimization. The Genetic Algorithm is similar to evolution strategy which iterates through fitness assessment, selection and breeding, and population reassembly. In this paper, we will show two different experimental results performed on known benchmark problems. We clearly show that results obtained by Genetic Algorithm with increasing population is better than so far best technique which is really difficult for future researchers to beat.  相似文献   

7.
This paper proposes an elastic demand network equilibrium model for networks with transit and walking modes. In Hong Kong, the multi‐mode transit system services over 90% of the total journeys and the demand on it is continuously increasing. Transit and walking modes are related to each other as transit passengers have to walk to and from transit stops. In this paper, the multi‐mode elastic‐demand network equilibrium problem is formulated as a variational inequality problem where the combined mode and route choices are modeled in a hierarchical logit structures and the total travel demand for each origin‐destination pair is explicitly given by an elastic demand function. In addition, the capacity constraint for transit vehicles and the effects of bi‐directional flows on walkways are considered in the proposed model. All these congestion effects are taken into account for modeling the travel choices. A solution algorithm is developed to solve the multi‐mode elastic‐demand network equilibrium model. It is based on a Block Gauss‐Seidel decomposition approach coupled with the method of successive averages. A numerical example is used to illustrate the application of the proposed model and solution algorithm.  相似文献   

8.
This paper analyzes the potential to, and impacts of, increasing transit modal split in a polycentric metropolitan area – the Philadelphia, Pennsylvania region. Potential transit riders are preselected as those travelers whose trips begin and end in areas with transit-supportive land uses, defined as “activity centers,” areas of high-density employment and trip attraction. A multimodal traffic assignment model is developed and solved to quantify the generalized cost of travel by transit services and private automobile under (user) equilibrium conditions. The model predicts transit modal split by identifying the origin–destination pairs for which transit offers lower generalized cost. For those origin–destination pairs for which transit does not offer the lowest generalized cost, I compute a transit competitiveness measure, the ratio of transit generalized cost to auto generalized cost. The model is first formulated and solved for existing transit service and regional pricing schemes. Next, various transit incentives (travel time or fare reductions, increased service) and auto disincentives (higher out of pocket expenses) are proposed and their impacts on individual travel choices and system performance are quantified. The results suggest that a coordinated policy of improved transit service and some auto disincentives is necessary to achieve greater modal split and improved system efficiency in the region. Further, the research finds that two levels of coordinated transit service, between and within activity centers, are necessary to realize the greatest improvements in system performance.  相似文献   

9.
Development of an origin-destination demand matrix is crucial for transit planning. The development process is facilitated by automated transit smart card data, making it possible to mine boarding and alighting patterns on an individual basis. This research proposes a novel trip chaining method which uses Automatic Fare Collection (AFC) and General Transit Feed Specification (GTFS) data to infer the most likely trajectory of individual transit passengers. The method relaxes the assumptions on various parameters used in the existing trip chaining algorithms such as transfer walking distance threshold, buffer distance for selecting the boarding location, time window for selecting the vehicle trip, etc. The method also resolves issues related to errors in GPS location recorded by AFC systems or selection of incorrect sub-route from GTFS data. The proposed trip chaining method generates a set of candidate trajectories for each AFC tag to reach the next tag, calculates the probability of each trajectory, and selects the most likely trajectory to infer the boarding and alighting stops. The method is applied to transit data from the Twin Cities, MN, which has an open transit system where passengers tap smart cards only once when boarding (or when alighting on pay-exit buses). Based on the consecutive tags of the passenger, the proposed algorithm is also modified for pay-exit cases. The method is compared to previous methods developed by the researchers and shows improvement in the number of inferred cases. Finally, results are visualized to understand the route ridership and geographical pattern of trips.  相似文献   

10.
This paper proposes a stochastic dynamic transit assignment model with an explicit seat allocation process. The model is applicable to a general transit network. A seat allocation model is proposed to estimate the probability of a passenger waiting at a station or on-board to get a seat. The explicit seating model allows a better differentiation of in-vehicle discomfort experienced by sitting and standing passengers. The paper proposes simulation procedures for calculating the sitting probability of each type of passengers. A heuristic solution algorithm for finding an equilibrium solution of the proposed model is developed and tested. The numerical tests show significant influences of the seat allocation model on equilibrium departure time and route choices of passengers. The proposed model is also applied to evaluate the effects of an advanced public transport information system (APTIS) on travellers’ decision-making.  相似文献   

11.
Cities worldwide are implementing modern transit systems to improve mobility in the increasingly congested metropolitan areas. Despite much research on the effects of such systems, a comparison of effects across transit modes and countries has not been studied comprehensively. This paper fills this gap in the literature by reviewing and comparing the effects obtained by 86 transit systems around the world, including Bus Rapid Transit (BRT), Light Rail Transit (LRT), metro and heavy rail transit systems. The analysis is twofold by analysing (i) the direct operational effects related to travel time, ridership and modal shifts, and (ii) the indirect strategic effects in terms of effects on property values and urban development. The review confirms the existing literature suggesting that BRT can attract many passengers if travel time reductions are significantly high. This leads to attractive areas surrounding the transit line with increasing property values. Such effects are traditionally associated with attractive rail-based public transport systems. However, a statistical comparison of 41 systems did not show significant deviations between effects on property values resulting from BRT, LRT and metro systems, respectively. Hence, this paper indicates that large strategic effects can be obtained by implementing BRT systems at a much lower cost.  相似文献   

12.
Transit passengers’ response to crowded conditions has been studied empirically, yet is limitedly included in transport models currently used in the design of policy and infrastructure investments. This has consequences for the practical applicability of these models in studies on, for instance, timetabling, train capacity management strategies, project appraisal, and passenger satisfaction. Here we propose four methods to include the effect of crowding, based on existing studies on passengers’ perception and response as well as often-used crowding indicators. These four alternative methods are implemented in the train passenger assignment procedure of the Dutch national transport model, and evaluated with respect to their impacts on the model results for the Dutch railway network. The four methods relate to four different ways in which an additive trip penalty and/or time-multiplier can be incorporated in the train utility function for different travel purposes, to capture the disutility of crowding as measured by the load factor. The analyses of the test case favor the hybrid method using both a boarding penalty (capturing seat availability upon boarding) and a time-multiplier (capturing physical comfort and safety throughout the trip). This method produces consistent results, while the additional computational effort that it imposes is acceptable. Further empirical underpinning is needed to conclusively show which of these methods best captures passengers’ response behavior quantitatively (for different travel purposes and conditions).  相似文献   

13.
This paper proposes a new scheduled-based transit assignment model. Unlike other schedule-based models in the literature, we consider supply uncertainties and assume that users adopt strategies to travel from their origins to their destinations. We present an analytical formulation to ensure that on-board passengers continuing to the next stop have priority and waiting passengers are loaded on a first-come-first-serve basis. We propose an analytical model that captures the stochastic nature of the transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse weather. We adopt a mean variance approach that can consider the covariance of travel time between links in a space–time graph but still lead to a robust transit network loading procedure when optimal strategies are adopted. The proposed model is formulated as a user equilibrium problem and solved by an MSA-type algorithm. Numerical results are reported to show the effects of supply uncertainties on the travel strategies and departure times of passengers.  相似文献   

14.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

15.
This article presents a Web-based transit information system design that uses Internet Geographic Information Systems (GIS) technologies to integrate Web serving, GIS processing, network analysis and database management. A path finding algorithm for transit network is proposed to handle the special characteristics of transit networks, e.g., time-dependent services, common bus lines on the same street, and non-symmetric routing with respect to an origin/destination pair. The algorithm takes into account the overall level of services and service schedule on a route to determine the shortest path and transfer points. A framework is created to categorize the development of transit information systems on the basis of content and functionality, from simple static schedule display to more sophisticated real time transit information systems. A unique feature of the reported Web-based transit information system is the Internet-GIS based system with an interactive map interface. This enables the user to interact with information on transit routes, schedules, and trip itinerary planning. Some map rendering, querying, and network analysis functions are also provided.  相似文献   

16.
Previous research has combined automated fare-collection (AFC) and automated vehicle-location (AVL) data to infer the times and locations of passenger origins, interchanges (transfers), and destinations on multimodal transit networks. The resultant origin–interchange–destination flows (and the origin–destination (OD) matrices that comprise those flows), however, represent only a sample of total ridership, as they contain only those journeys made using the AFC payment method that have been successfully recorded or inferred. This paper presents a method for scaling passenger-journey flows (i.e., linked-trip flows) using additional information from passenger counts at each station gate and bus farebox, thereby estimating the flows of non-AFC passengers and of AFC passengers whose journeys were not successfully inferred.The proposed method is applied to a hypothetical test network and to AFC and AVL data from London’s multimodal public transit network. Because London requires AFC transactions upon both entry and exit for rail trips, a rail-only OD matrix is extracted from the estimated multimodal linked-trip flows, and is compared to a rail OD matrix generated using the iterative proportional fitting method.  相似文献   

17.
We present a transit equilibrium model in which boarding decisions are stochastic. The model incorporates congestion, reflected in higher waiting times at bus stops and increasing in-vehicle travel time. The stochastic behavior of passengers is introduced through a probability for passengers to choose boarding a specific bus of a certain service. The modeling approach generates a stochastic common-lines problem, in which every line has a chance to be chosen by each passenger. The formulation is a generalization of deterministic transit assignment models where passengers are assumed to travel according to shortest hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) and provide a formulation for a more general network problem (stochastic transit equilibrium). The resulting waiting time and network load expressions are validated through simulation. An algorithm to solve the general stochastic transit equilibrium is proposed and applied to a sample network; the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, which motivates the implementation of the methodology on a real-size network case as the next step of this research.  相似文献   

18.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

19.
Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.  相似文献   

20.
Flex-route transit, which combines the advantages of fixed-route transit and demand-responsive transit, is one of the most promising options in low-demand areas. This paper proposes a slack arrival strategy to reduce the number of rejected passengers and idle time at checkpoints resulting from uncertain travel demand. This strategy relaxes the departure time constraints of the checkpoints that do not function as transfer stations. A system cost function that includes the vehicle operation cost and customer cost is defined to measure system performance. Theoretical and simulation models are constructed to test the benefits of implementing the slack arrival strategy in flex-route transit under expected and unexpected demand levels. Experiments over a real-life flex-route transit service show that the proposed slack arrival strategy could improve the system performance by up to 40% with no additional operating cost. The results demonstrate that the proposed strategy can help transit operators provide more cost-efficient flex-route transit services in suburban and rural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号