首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many studies have found that residents living in suburban neighborhoods drive more and walk less than their counterparts in traditional neighborhoods. This evidence supports the advocacy of smart growth strategies to alter individuals’ travel behavior. However, the observed differences in travel behavior may be more of a residential choice than a travel choice. Applying the seemingly unrelated regression approach to a sample from Northern California, we explored the relationship between the residential environment and nonwork travel frequencies by auto, transit, and walk/bicycle modes, controlling for residential self-selection. We found that residential preferences and travel attitudes (self-selection) significantly influenced tripmaking by all three modes, and also that neighborhood characteristics (the built environment and its perception) retained a separate influence on behavior after controlling for self-selection. Both preferences/attitudes and the built environment itself played a more prominent role in explaining the variation in non-motorized travel than for auto and transit travel. Taken together, our results suggest that if cities use land use policies to offer options to drive less and use transit and non-motorized modes more, many residents will tend to do so.  相似文献   

2.
This paper addresses the relations between travel behavior and land use patterns using a Structural Equations Modeling (SEM) framework. The proposed model structure draws on two earlier models developed for Lisbon and Seattle which show significant effects of land use patterns on travel behavior. The travel behavior variables included here are multifaceted including commuting distance, car ownership, the amount of mobility by mode (car, transit and non-motorized modes), both in terms of total kilometers travelled and number of trips. The model also includes a travel scheduling variable, which is the total time spent between the first and last trips to reflect daily constraints in time allocation and travel.The modeled land use variables measure the levels of urban concentration and density, diversity, both in terms of types of uses and the mix between jobs and inhabitants/residents, the transport supply levels, transit and road infrastructure, and accessibility indicators. The land use patterns are described both at the residence and employment zones of each individual included in the model by using a factor analysis technique as a data reduction and multicollinearity elimination technique. In order to explicitly account for self selection bias the land use variables are explicitly modeled as functions of socioeconomic attributes of individuals and their households.The results obtained show that people with different socioeconomic characteristics tend to work and live in places of substantially different urban environments. But besides these socioeconomic self-selection effects, land use variables significantly affect travel behavior. More precisely the effects of land use are in great part passed thru variables describing long term decisions like commuting distance, and car ownership. These results point to similar conclusions from the models developed for Lisbon and Seattle and thus give weight to the use of land use policies as tools for changing travel behavior.  相似文献   

3.
Pedestrian travel offers a wide range of benefits to both individuals and society. Planners and public health officials alike have been promoting policies that improve the quality of the built environment for pedestrians: mixed land uses, interconnected street networks, sidewalks and other facilities. Whether such policies will prove effective remains open to debate. Two issues in particular need further attention. First, the impact of the built environment on pedestrian behavior may depend on the purpose of the trip, whether for utilitarian or recreational purposes. Second, the connection between the built environment and pedestrian behavior may be more a matter of residential location choice than of travel choice. This study aims to provide new evidence on both questions. Using 1368 respondents to a 1995 survey conducted in six neighborhoods in Austin, TX, two separate negative binomial models were estimated for the frequencies of strolling trips and pedestrian shopping trips within neighborhoods. We found that although residential self-selection impacts both types of trips, it is the most important factor explaining walking to a destination (i.e. for shopping). After accounting for self-selection, neighborhood characteristics (especially perceptions of these characteristics) impact strolling frequency, while characteristics of local commercial areas are important in facilitating shopping trips.  相似文献   

4.
Modeling the interaction between the built environment and travel behavior is of much interest to transportation planning professionals due to the desire to curb vehicular travel demand through modifications to built environment attributes. However, such models need to take into account self-selection effects in residential location choice, wherein households choose to reside in neighborhoods and built environments that are conducive to their lifestyle preferences and attitudes. This phenomenon, well-recognized in the literature, calls for the specification and estimation of joint models of multi-dimensional land use and travel choice processes. However, the estimation of such model systems that explicitly account for the presence of unobserved factors that jointly impact multiple choice dimensions is extremely complex and computationally intensive. This paper presents a joint GEV-based logit regression model of residential location choice, vehicle count by type choice, and vehicle usage (vehicle miles of travel) using a copula-based framework that facilitates the estimation of joint equations systems with error dependence structures within a simple and flexible closed-form analytic framework. The model system is estimated on a sample derived from the 2000 San Francisco Bay Area Household Travel Survey. Estimation results show that there is significant dependency among the choice dimensions and that self-selection effects cannot be ignored when modeling land use-travel behavior interactions.  相似文献   

5.
The role of residential self-selection has become a major subject in the debate over the relationships between the built environment and travel behavior. Numerous previous empirical studies on this subject have provided valuable insights into the associations between the built environment and travel behavior. However, the vast majority of the studies were conducted in North American and European cities; yet this research is still in its infancy in most developing countries, including China, where residential and transport choices are likely to be more constrained and travel-related attitudes quite different from those in the developed world. Using the data collected from 2038 residents currently living in TOD neighborhoods and non-TOD neighborhoods in Shanghai City, this paper aims to partly fill the gaps by investigating the causal relationship between the built environment and travel behavior in the Chinese context. More specifically, this paper employs Heckman’s sample selection model to examine the reduction impacts of TOD on personal vehicle kilometers traveled (VKT), controlling for self-selection. The results show that whilst the effects of residential self-selection are apparent; the built environment exhibits the most significant impacts on travel behavior, playing the dominant role. These findings produce a sound basis for local policymakers to better understand the nature and magnitude toward the impacts of the built environment on travel behavior. Providing the government department with reassurance that effective interventions and policies on land use aimed toward altering the built environment would actually lead to meaningful changes in travel behavior.  相似文献   

6.
Suburban sprawl has been widely criticized for its contribution to auto dependence. Numerous studies have found that residents in suburban neighborhoods drive more and walk less than their counterparts in traditional environments. However, most studies confirm only an association between the built environment and travel behavior, and have yet to establish the predominant underlying causal link: whether neighborhood design independently influences travel behavior or whether preferences for travel options affect residential choice. That is, residential self-selection may be at work. A few studies have recently addressed the influence of self-selection. However, our understanding of the causality issue is still immature. To address this issue, this study took into account individuals’ self-selection by employing a quasi-longitudinal design and by controlling for residential preferences and travel attitudes. In particular, using data collected from 547 movers currently living in four traditional neighborhoods and four suburban neighborhoods in Northern California, we developed a structural equations model to investigate the relationships among changes in the built environment, changes in auto ownership, and changes in travel behavior. The results provide some encouragement that land-use policies designed to put residents closer to destinations and provide them with alternative transportation options will actually lead to less driving and more walking.
Susan L. HandyEmail:

Xinyu (Jason) Cao   is a research fellow in the Upper Great Plains Transportation Institute at North Dakota State University. His research interests include the influences of land use on travel and physical activity, and transportation planning. Patricia L. Mokhtarian   is a professor of Civil and Environmental Engineering, Chair of the interdisciplinary Transportation Technology and Policy graduate program, and Associate Director for Education of the Institute of Transportation Studies at the University of California, Davis. She specializes in the study of travel behavior. Susan L. Handy   is a professor in the Department of Environmental Science and Policy and Director of the Sustainable Transportation Center at the University of California, Davis. Her research interests center around the relationships between transportation and land use, particularly the impact of neighborhood design on travel behavior.  相似文献   

7.
This study examined the effects of land use and attitudinal characteristics on travel behavior for five diverse San Francisco Bay Area neighborhoods. First, socio-economic and neighborhood characteristics were regressed against number and proportion of trips by various modes. The best models for each measure of travel behavior confirmed that neighborhood characteristics add significant explanatory power when socio-economic differences are controlled for. Specifically, measures of residential density, public transit accessibility, mixed land use, and the presence of sidewalks are significantly associated with trip generation by mode and modal split. Second, 39 attitude statements relating to urban life were factor analyzed into eight factors: pro-environment, pro-transit, suburbanite, automotive mobility, time pressure, urban villager, TCM, and workaholic. Scores on these factors were introduced into the six best models discussed above. The relative contributions of the socio-economic, neighborhood, and attitudinal blocks of variables were assessed. While each block of variables offers some significant explanatory power to the models, the attitudinal variables explained the highest proportion of the variation in the data. The finding that attitudes are more strongly associated with travel than are land use characteristics suggests that land use policies promoting higher densities and mixtures may not alter travel demand materially unless residents' attitudes are also changed.  相似文献   

8.
Rapid urban expansion in China has created both opportunities and challenges for promoting active transport in urban residential communities. Previous studies have shown that the urban form at the city scale has affected active transport in Chinese cities. However, there is less agreement about how the physical and social variations of neighborhood types should be addressed. This research investigates the four most representative neighborhood types found in Chinese cities: traditional mixed-use, slab block work-unit, gated community, and resettlement housing. Household travel diaries conducted in Chengdu in 2016 were analyzed using binary logistic regressions, supplemented by informal onsite interviews. The findings indicate significant variations in the use and accessibility of active transport in each neighborhood type for non-work trips. This suggests that each neighborhood type may need different strategies for promoting active transport: (1) the traditional mixed-use neighborhoods are in need of intensified urban retrofitting projects to reclaim public open space; (2) the work-unit could benefit from comprehensive plans rather than a patchwork of projects; (3) while opening up gated communities can improve porosity across neighborhoods and promote active transport, the more pressing issue may be their inability to keep up with the transportation needs of the residents; and (4) residents of resettlement housing should have better access to employment using transit and non-motorized modes.  相似文献   

9.
A large number of studies have investigated the association between the built environment and travel behavior. However, most studies did not explicitly quantify the contribution of residential self-selection to the connection. Using the 2006 data collected from a regional travel diary in Raleigh, NC, this study applies propensity score matching to explore the effects of the regional location of individuals’ residences on their vehicle miles driven. We found that residential location plays a more important role in affecting driving behavior than residential self-selection; and that the self-selection effect is non-trivial when we compare driving behavior between urban residents and people living in other areas. Therefore, for such comparisons, the observed influence of residential locations on driving should be appropriately discounted when we evaluate the causal impacts of the built environment on travel behavior.  相似文献   

10.
There is considerable research on the climate effects of daily travel, including research on the spatio-temporal and socioeconomic impact factors of daily travel and associated climate change effects. However, this is less true with respect to long-distance trips. This paper uses national transport survey data from Germany to point out differences in GHG emissions related to demographic, socioeconomic and spatial characteristics for daily and long-distance travel. Daily travel and long-distance travel are investigated simultaneously and separately using Logit and OLS regressions. The results show that transport-related GHG emissions from long-distance trips and daily trips are affected by sociodemographics in largely the same direction. In contrast, spatial attributes, like municipality size or density grade of the region, show a different picture. Per capita emissions in rural and suburban areas are higher for daily trips, but lower for long-distance trips than emissions caused by urban residents. While we cannot rule out the possibility of residential self-selection, our findings challenge the idea that compact urban development may help reduce CO2 emissions once long-distance trips are taken into account.  相似文献   

11.
Transit development is one planning strategy that seeks to partially overcome limitations of low-density single use car oriented development styles. While many studies focus on how residential proximity to transit influences the travel behaviors of individuals, the effect of workplace proximity to transit is less understood. This paper asks, does working near a light rail transit station influence the travel behaviors of workers differently than workers living near a station? We begin by examining workers’ commute mode based on their residential and workplace proximity to transit station areas. Next, we analyze the ways in which personal travel behaviors differ between those who drive to work and those who do not. The data came from a 2009 travel behavior survey in the Denver, Colorado metropolitan area, which contains 8000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-car transportation. The results of this study indicate that living near a transit station area by itself does not increase the likelihood of using non-car modes for work commutes. But if the destination (work) is near a transit station area, persons are less likely to drive a car to work. People who both live and work in a transit station area are less likely to use a car and more likely to take non-car modes for both work and non-work (personal) trips. Especially for persons who work near a transit station area, the measures of personal trips and distances show a higher level of mobility for non-car commuters than car commuters – that is, more trips and more distant trips. The use of non-car modes for personal trips is most likely to occur by non-car commuters, regardless of their transit station area relationship.  相似文献   

12.
By estimating multinomial choice models, this paper examines the relationship between travel mode choice and attributes of the local physical environment such as topography, sidewalk availability, residential density, and the presence of walking and cycling paths. Data for student and staff commuters to the University of North Carolina in Chapel Hill are used to illustrate the relationship between mode choice and the objectively measured environmental attributes, while accounting for typical modal characteristics such as travel time, access time, and out-of-pocket cost. Results suggest that jointly the four attributes of the local physical environment make significant marginal contributions to explaining travel mode choice. In particular, the estimates reveal that local topography and sidewalk availability are significantly associated with the attractiveness of non-motorized modes. Point elasticities are provided and recommendations given regarding the importance of incorporating non-motorized modes into local transportation planning and in the study of how the built environment influences travel behavior.  相似文献   

13.
14.
Numerous studies have established the link between the built environment and travel behavior. However, fewer studies have focused on environmental costs of travel (such as CO2 emissions) with respect to residential self-selection. Combined with the application of TIQS (Travel Intelligent Query System), this study develops a structural equations model (SEM) to examine the effects of the built environment and residential self-selection on commuting trips and their related CO2 emissions using data from 2015 in Guangzhou, China. The results demonstrate that the effect of residential self-selection also exists in Chinese cities, influencing residents’ choice of living environments and ultimately affecting their commute trip CO2 emissions. After controlling for the effect of residential self-selection, built environment variables still have significant effects on CO2 emissions from commuting although some are indirect effects that work through mediating variables (car ownership and commuting trip distance). Specifically, CO2 emissions are negatively affected by land-use mix, residential density, metro station density and road network density. Conversely, bus stop density, distance to city centers and parking availability near the workplace have positive effects on CO2 emissions. To promote low carbon travel, intervention on the built environment would be effective and necessary.  相似文献   

15.
This paper explores the influence of individuals’ environmental attitudes and urban design features on travel behavior, including mode choice. It uses data from residents of 13 new neighborhood UK developments designed to support sustainable travel. It is found that almost all respondents were concerned about environmental issues, but their views did not necessarily ‘match’ their travel behavior. Individuals’ environmental concerns only had a strong relationship with walking within and near their neighborhood, but not with cycling or public transport use. Residents’ car availability reduced public transport trips, walking and cycling. The influence of urban design features on travel behaviors was mixed, higher incidences of walking in denser, mixed and more permeable developments were not found and nor did residents own fewer cars than the population as a whole. Residents did, however, make more sustainable commuting trips than the population in general. Sustainable modes of travel were related to urban design features including secured bike storage, high connectivity of the neighborhoods to the nearby area, natural surveillance, high quality public realm and traffic calming. Likewise the provision of facilities within and nearby the development encouraged high levels of walking.  相似文献   

16.
Wang  Donggen  Lin  Tao 《Transportation》2019,46(1):51-74

The influence of the built environment on travel behavior has been the subject of considerable research attention in recent decades. Scholars have debated the role of residential self-selection in explaining the associations between the built environment and travel behavior. The purpose of this study is to make a contribution to the literature by adopting the cross-lagged panel modeling approach to analyze a panel data, which scholars have recommended as the ideal design for studying the influence of the built environment on travel behavior accounting for the residential self-selection. To that objective, we collected activity-travel diary data from a sample of 229 households in Beijing before and after they moved from one residential location to another. We developed a two-wave structural equation model linking the residential built environment to travel behavior and taking into consideration travel-related attitudes before and after residential change. The modeling results show that individuals’ travel attitudes may change after a home relocation. We found no evidence of residential self-selection, but significant influence of the built environment on travel preference. Nevertheless, the direct influence of travel preference on travel behavior seems to be stronger than that of the built environment. As one of the very few studies to use panel data, this research presents new insights into the relationship between the built environment and travel behavior and the role of residential self-selection.

  相似文献   

17.
This paper addresses the relationship between land use, destination selection, and travel mode choice. Specifically, it focuses on intrazonal trips, a sub-category of trip making where both trip origin and trip destination are contained in the same geographic unit of analysis, using data from the 1994 Household Activity and Travel Diary Survey conducted by Portland Metro. Using multinomial logit and binary logistic models to measure travel mode choice and decision to internalize trips, the evidence supports the conclusions that (1) intrazonal trips characteristics suggest mode choice for these trips might be influenced by urban form, which in turn affects regional trip distribution; (2) there is a threshold effect in the ability of economic diversity/mixed use to alter travel behavior; and (3) greater emphasis to destinations within the area where an individual’s home is located needs to be given in trip distribution models.  相似文献   

18.
A geo-positioning satellite (GPS)-based survey, using a web-based prompted recall tool, was conducted on a sample of 94 students at the University of Toronto from November 2008 to April 2009. The sample included students with and without telephone land lines, allowing for a statistical comparison of demographic and travel behaviour attributes. The same subjects simultaneously completed a traditional trip reporting survey, modelled on the household travel survey in Toronto, allowing for a comparison between the travel behaviour information obtained from the GPS and that reported by the participants in the traditional survey. Students with a land line are more likely to live in houses, with parents, and to live in suburban areas than students without a land line. They also make fewer trips in total, fewer discretionary trips, more transit and auto trips and fewer active trips than students without a land line. By comparing questionnaire-based data and GPS data, we found that most participants reported in the questionnaire either the same number of GPS-based trips or fewer. On average, the GPS survey captured 1.29 more daily trips per participant than the corresponding trips reported in the questionnaire.  相似文献   

19.
Accessibility has been established as a major planning goal in recent years. However, little knowledge exists regarding how individuals value walkability, transit accessibility, and auto accessibility differently when deciding where to live. To fill this knowledge gap, this study conducts residential location choice modeling across three U.S. regions—Atlanta, Puget Sound, and Southeast Michigan. I find that, overall, all three types of accessibility are important determinants of residential location choice. Transit accessibility has a statistically significant positive influence on residential location choice across all three regions. On auto accessibility, results show that commute time by auto has the greatest influence on residential location choice among all independent variables, but auto accessibility to nonwork destinations appears to be inconsequential. Moreover, walkability is found to be a key determinant of residential location choice in the Puget Sound region but not the other two regions. I argue that these regional differences result from a lack of choice among Atlanta and Southeast Michigan residents, that is, a undersupply of walkable neighborhoods inhibits households in the two regions from living in such neighborhoods. This finding suggests the need for cities and regions to promote pedestrian-oriented development in order to broaden residential choice. The results further imply that, due to housing-supply constraints, households often have to live in a neighborhood with a level of accessibility lower than what they prefer. Transportation and land-use planners should address this “residential dissonance” when applying residential location choice models to predict land-use growth patterns.  相似文献   

20.
In this paper, a joint multinomial logit (MNL) model of residential location and vehicle availability choice is formulated and estimated using a sample of households from the San Francisco, CA area Metropolitan Transportation Commission's 1990 household travel survey. Subsequently, models of travel intensity (number of daily household trips and vehicle-miles traveled) are estimated as a function of household characteristics and of attributes derived from the joint residential location and auto availability choice model (number of vehicles, percent land developed). A policy test shows that reducing the cost of locating in the densest areas of the metropolitan area is likely to have only marginal impact on vehicle availability and household trip making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号