首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 982 毫秒
1.
B级车轮铸钢疲劳可靠性S-N曲线重构方法   总被引:1,自引:0,他引:1  
为实现任意可靠性水平疲劳强度设计、寿命预测和可靠性评定,提出了B级车轮铸钢疲劳可靠性S-N曲线的重构方法,应用Monte-Carlo模拟技术在可接受误差范围内重构了B级铸钢的疲劳极限和成组法S-N数据,依照常规法测定了B级铸钢中、短寿命范围的可靠性S-N曲线,应用概率疲劳极限外推法获得了包含中、短和长寿命范围的可靠性曲线。在此基础上,考虑工程应用实际情况,推导出了任意概率水平下的里程可靠性曲线。重构获得的疲劳极限及S-N数据最大模拟误差分别只有0.15%和0.07%,较好再现了原始数据,对曲线的外推使其合理性达到生产需要的104km以上,说明曲线重构方法可获得所需疲劳可靠性S-N曲线。  相似文献   

2.
为了阐明Ca含量对镁合金疲劳性能的影响,采用旋转弯曲疲劳试验机对两种AMCa镁合金进行超高周疲劳实验,并利用扫描电子显微镜SEM (scanning electron microscope)和X射线能谱仪EDS (X-ray energy dispersive spectroscopy)观察疲劳试样的断口形貌,分析了两种镁合金疲劳S-N(疲劳应力-疲劳寿命)曲线特性和疲劳断裂行为,讨论了Ca元素含量增加对镁合金疲劳寿命和疲劳裂纹萌生机制的影响. 结果表明,AM1.77 Ca镁合金S-N曲线没有传统的疲劳极限,呈现曲线连续下降趋势;AM1.85 Ca镁合金具有双S-N曲线特性,在130 MPa左右出现转折点;Ca元素含量增加导致镁合金产生微观结构缺陷,使材料的疲劳裂纹萌生模式从AM1.77 Ca镁合金的表面萌生模式转变为AM1.85 Ca镁合金的两种疲劳裂纹萌生模式,即表面萌生和次表面萌生模式,这种转变对材料抗疲劳性能的提升不利.   相似文献   

3.
16MnR钢焊接头的延拓概率疲劳S-N曲线   总被引:1,自引:2,他引:1  
针对16MnR钢焊接头,利用现有不同试验条件下的中短寿命试验数据,采用2m-1指数法,延拓概率疲劳S-N曲线到长寿命范围.基于Basquin关系,得到包含存活概率曲线、置信度曲线和两者融合曲线在内的延拓概率疲劳曲线,在中短寿命范围对试验数据有良好的拟合效果,在延拓阶段可对长寿命范围作近似预测.该方法可近似合理地对曲线进行延拓,较直接利用中短寿命S-N曲线延长到长寿命范围的直接法更为合理,结果表明,该方法是可行的.  相似文献   

4.
寿命服从Weibull分布时求p-S-N曲线的极大似然法   总被引:1,自引:0,他引:1  
针对疲劳寿命服从Weibull分布时,研究了材料p-S_N曲线方程拟合的极大似然法,将求解方程参数的问题化为求多元非线性函数的极小点问题,并用球墨铸铁材料的疲劳试验结果说明了该方法的工程应用,给出了球墨铸铁材料在中等寿命区的P-S-N曲线。  相似文献   

5.
为获得任意可靠性水平下铁道车辆B级车轮铸钢的疲劳设计依据,利用材料的概率机械性能、疲劳极限、中短与长寿命范围的疲劳S-N曲线参数,确定该铸钢的疲劳可靠性设计Goodman—Smith图.图中用车辆行驶里程度量车轮的疲劳寿命.采用Goodman修正考虑平均应力效应,疲劳强度由中短与长寿命范围的概率疲劳S-N曲线确定.图中八边形的顶点坐标由全概率模式求解.  相似文献   

6.
随机疲劳长裂纹扩展率的新概率模型   总被引:4,自引:1,他引:3  
为实现在全应力强度因子范围合理进行结构安全性分析,提出了概全门槛值和断裂韧度的随机疲劳长裂纹扩展率的新概率模型。考虑了平均应力效应,以给定应力强度因子下裂纹扩展率服从对数正态分布为基础,考虑数据分散性规律和试样数量对概率评价的影响,将存活概率和置信度相融合,由线性回归结合极大似然原理确定概率模型的参数。通过对铁道车辆LZ50车轴钢试验数据的分析表明,模型从数学上良好描述了疲劳长裂纹从裂纹启裂到瞬时断裂的整个随机过程,比较Paris、Elber和Forman模型拟合试验数据表明,该模型相关系数最大,拟合效果最好。  相似文献   

7.
为了提高随机疲劳长裂纹扩展率预测精度,基于Forman方程,发展了随机疲劳长裂纹扩展概率模型及其参数测定方法,考虑数据分散性规律和试样数量对概率评价的影响,得到了包含存活概率曲线、置信度曲线和两者融合曲线在内的长裂纹扩展率关系曲线,在给定应力强度因子范围内,裂纹扩展率服从对数正态分布条件下,采用线性回归和极大似然法测定模型参数。对铁道车辆LZ50车轴钢裂纹扩展数据分析表明,该模型反映了材料断裂韧度对长裂纹扩展率的影响,克服了基于Paris-Er-dogan方程的概率模型在高应力强度因子范围预测偏于危险的缺陷,验证了该模型的合理性。  相似文献   

8.
开展了EA4T合金钢材料的低周疲劳试验、旋转弯曲高周疲劳试验与裂纹扩展速率试验, 考虑载荷类型、表面质量与尺寸系数等因素, 修正了标准小试样疲劳极限以预测全尺寸车轴的疲劳性能; 建立了轴箱内置铁路车轴(内箱车轴) 的有限元模型, 分析了内箱车轴与传统轴箱外置铁路车轴(外箱车轴) 临界安全部位的差异; 基于安全寿命设计理论, 结合修正的线性Miner疲劳累积损伤准则和载荷谱, 研究了内箱车轴的疲劳强度与服役性能; 分别采用Paris公式、NASGRO方程和LAPS模型拟合了裂纹扩展速率曲线, 基于损伤容限设计方法估算了内箱车轴和外箱车轴的裂纹扩展寿命。研究结果表明: 标准小试样的疲劳极限明显高于全尺寸车轴, 其疲劳极限均值分别为369、286 MPa; 与传统外箱车轴相比, 由于加载位置的改变, 内箱车轴的临界安全部位从卸荷槽处转移至轴身中部; 内箱车轴疲劳总寿命为2.5×1012 km, 满足30年服役寿命的设计要求; 但是在运输或服役过程中车轴表面不可避免会存在缺陷, 缺陷处存在严重的应力集中, 为裂纹的萌生和扩展提供了便利条件, 使车轴疲劳寿命大幅降低; 当车轴临界安全部位的裂纹深度扩展到5 mm时, 内箱车轴和外箱车轴的剩余寿命分别仅为3.2×105、2.0×105 km, 应根据无损探伤精度合理制定无损检测周期, 确保车轴安全服役。   相似文献   

9.
以临界平面法疲劳裂纹萌生寿命预测方法为系统数学模型,采用单参数敏感性分析方法,分析了钢轨材质参数(弹性模量、泊松比、屈服强度和抗拉强度)对疲劳裂纹萌生寿命的影响,计算了各参数的敏感度因子.计算结果表明:疲劳裂纹萌生寿命对弹性模量和屈服强度最敏感,而对泊松比不敏感.这一计算结果与试验统计结果相吻合.通过敏感性分析,认为在确定钢轨材质参数取值时要对弹性模量、屈服强度和抗拉强度的准确性高度重视;提高材料的抗疲劳性能应从提高材料的屈服强度入手,建议规范中增加对钢轨材质屈服强度的要求.  相似文献   

10.
公路桥梁疲劳寿命的准确评估,对于车辆行驶安全具有重要的现实意义,基于此,提出并设计了一种基于S-N曲线的公路混凝土桥梁疲劳寿命安全评估方法。利用混凝土外荷载与疲劳寿命间的关系,建立S-N评估曲线,进而确定桥梁混凝土的临界裂纹尺寸,在此基础上,对其安全裂纹拓展尺寸进行计算,实现公路桥梁疲劳寿命的准确评估。通过实验论证分析的方式,确定基于S-N曲线评估方法的有效性,结果表明,该方法能够较好地预测公路混凝土桥梁的疲劳使用寿命,较弹性力学评估方法具有明显的优势。  相似文献   

11.
基于UIC510-3规程和热负荷试验,确定了车轮疲劳强度分析的计算载荷工况,采用有限元方法数值模拟了运行状态下车轮的应力变化规律,进行了车轮疲劳强度评定.采用最大主应力方法将多轴应力状态转化为单轴应力,通过Haigh—Goodman疲劳极限方程,得出机械载荷下车轮辐板孔的疲劳强度满足要求;采用Goodman方程,将制动热负荷产生的零.拉脉动循环转化为对称循环,根据辐板材料的S-Ⅳ曲线评价,得出单纯制动热负荷下辐板孔满足疲劳强度要求;提出制动热应力与机械波动应力的叠加方法,采用Miner法则预测机械载荷与制动热负荷组合作用下辐板孔裂纹的形成寿命.由不同载荷下车轮疲劳强度的评价结果,判断出导致辐板孔边裂纹形成的载荷因素是机械载荷与坡道制动的综合作用.  相似文献   

12.
焊接钢构件的概率疲劳寿命曲线和概率裂纹扩展速率曲线是进行钢结构疲劳可靠性设计和服役期间剩余疲劳寿命可靠性评估所必须的。为了获得一些构件的概率曲线,对美国NCHRP研究机构所进行的大规模焊接钢梁疲劳试验结果进行再分析。通过原始数据的统计检验,得出了常见构件的全寿命概率分布。根据Paris公式及已有的结论,对原始数据进行推演再分析,获得了Paris公式中参数的概率分布。最后,给出了概率断裂力学方法预测焊接钢梁在给定可靠度下疲劳裂纹扩展寿命的算例。  相似文献   

13.
为正确评价超高周范围内带缺口的5083-H111铝合金疲劳强度的降低程度和疲劳强度对缺口的敏感程度,用20kHz的超声疲劳实验技术分别对漏斗形光滑试件、缺口(2种)试件进行了105~1010周次的对称拉压超声疲劳实验,并用扫描电镜分析了疲劳断口形貌。结果表明:在1010周次内,光滑和缺口试件疲劳曲线分别表现出极限平台型和连续下降型特征,缺口显著降低了5083-H111铝合金的疲劳性能;绝大部分试件疲劳裂纹萌生于表面,断口上没有观察到鱼眼形貌特征。理论应力集中系数为1.94的试件疲劳弧线成凹形,理论应力集中系数为2.90的试件裂纹源分布在断口四周;不同的疲劳裂纹萌生机制使得缺口应力集中对疲劳性能的影响规律不同,对于只有一种表面裂纹萌生机制的5083-H111铝合金,超高周范围内疲劳缺口系数和疲劳缺口敏感系数均随着疲劳寿命的增加而增加。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号