首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Estimation of origin-destination (OD) matrices from link count data is a challenging problem because of the highly indeterminate relationship between the observations and the latent route flows. Conversely, estimation is straightforward if we observe the path taken by each vehicle. We consider an intermediate problem of increasing practical importance, in which link count data is supplemented by routing information for a fraction of vehicles on the network. We develop a statistical model for these combined data sources and derive some tractable normal approximations thereof. We examine likelihood-based inference for these normal models under the assumption that the probability of vehicle tracking is known. We show that the likelihood theory can be non-standard because of boundary effects, and provide conditions under which such irregular behaviour will be observed in practice. For regular cases we outline connections with existing generalised least squares methods. We then consider estimation of OD matrices under estimated and/or misspecified models for the probability of vehicle tracking. Theoretical developments are complemented by simulation experiments and an illustrative example using a section of road network from the English city of Leicester.  相似文献   

3.
Given a road network, a fundamental object of interest is the matrix of origin destination (OD) flows. Estimation of this matrix involves at least three sub-problems: (i) determining a suitable set of traffic analysis zones, (ii) the formulation of an optimisation problem to determine the OD matrix, and (iii) a means of evaluating a candidate estimate of the OD matrix. This paper describes a means of addressing each of these concerns. We propose to automatically uncover a suitable set of traffic analysis zones based on observed link flows. We then employ regularisation to encourage the estimation of a sparse OD matrix. We finally propose to evaluate a candidate OD matrix based on its predictive power on held out link flows. Analysis of our approach on a real-world transport network reveals that it discovers automated zones that accurately capture regions of interest in the network, and a corresponding OD matrix that accurately predicts observed link flows.  相似文献   

4.
This paper proposes a new travel time reliability‐based traffic assignment model to investigate the rain effects on risk‐taking behaviours of different road users in networks with day‐to‐day demand fluctuations and variations in travel time. A generalized link travel time function is used to capture the rain effects on vehicle travel times and road conditions. This function is further incorporated into daily demand variations to investigate those travel time variations arising from demand uncertainty and rain condition. In view of these rain effects, road users' perception errors on travel times and risk‐taking behaviours on path choices are incorporated in the proposed model with the use of a logit‐based stochastic user equilibrium framework. This new model is formulated as a variational inequality problem in terms of path flows. A numerical example is used to illustrate the application of the proposed model for assessment of the rain effects on road networks with uncertainty.  相似文献   

5.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

6.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

7.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In the research area of dynamic traffic assignment, link travel times can be derived from link cumulative inflow and outflow curves which are generated by dynamic network loading. In this paper, the profiles of cumulative flows are piecewise linearized. Both the step function (SF) and linear interpolation (LI) are used to approximate cumulative flows over time. New formulations of the SF-type and LI-type link travel time models are developed. We prove that these two types of link travel time models ensure first-in-first-out (FIFO) and continuity of travel times with respect to flows, and have other desirable properties. Since the LI-type link travel time model does not satisfy the causality property, a modified LI-type (MLI-type) link travel time model is proposed in this paper. We prove that the MLI-type link travel time model ensures causality, strong FIFO and travel time continuity, and that the MLI-type link travel time function is strictly monotone under the condition that the travel time of each vehicle on a link is greater than the free flow travel time on that link. Numerical examples are set up to illustrate the properties and accuracy of the three models.  相似文献   

10.
This paper describes the use of the Davidson congestion function in modelling network flows using equilibrium assignment. A modification to the function is given, which defines the function over all flows values, and consequently removes computational difficulties noted in earlier studies. The modification requires the inclusion of an additional model parameter, and the selection of a suitable value for this parameter is studied for two sets of data. The modified Davidson function is also compared to two alternative functions; a step-wise linear function and a quartic polynomial function, which have both been proposed as congestion functions. Comparisons are made between observed link volumes and the assigned volumes from these models. It is concluded that the modified Davidson function is useful for inclusion in an equilibrium assignment model, given its ability to reflect differences in network link type (e.g. capacity and speed) and environment through its parameters, the conceptual advantage of the function through its derivation from queueing theory, and the previous discovery of reliable methods for estimating its parameters. A value of about 0.8–0.9 is suggested for the parameter (μ, 0 < μ < 1) introduced in the modification.  相似文献   

11.
In this research, we propose a methodology to develop OD matrices using mobile phone Call Detail Records (CDR) and limited traffic counts. CDR, which consist of time stamped tower locations with caller IDs, are analyzed first and trips occurring within certain time windows are used to generate tower-to-tower transient OD matrices for different time periods. These are then associated with corresponding nodes of the traffic network and converted to node-to-node transient OD matrices. The actual OD matrices are derived by scaling up these node-to-node transient OD matrices. An optimization based approach, in conjunction with a microscopic traffic simulation platform, is used to determine the scaling factors that result best matches with the observed traffic counts. The methodology is demonstrated using CDR from 2.87 million users of Dhaka, Bangladesh over a month and traffic counts from 13 key locations over 3 days of that month. The applicability of the methodology is supported by a validation study.  相似文献   

12.
This paper shows the relationship between flow, generalized origin–destination (OD), and alternative route flow from a set of ordinal graph trajectories. In contrast to traffic assignment methods that employ OD matrix to produce flow matrix, we use ordinal trajectory on a network graph as input and produce both the generalized OD matrix and the flow matrix, with the alternative and substitute route flow matrices as additional outputs. By using linear algebra‐like operations on matrix sets, the relationship between network utilization (in terms of flow, generalized OD, alternative route flow, and desire line) and network structure (in terms of distance matrix and adjacency matrix) are derived. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.

The ubiquity of personal cellular phones in society has led to a surging interest in using Big Data generated by mobile phones in transport research. Studies have suggested that the vast amount of data could be used to estimate origin–destination (OD) matrices, thereby potentially replacing traditional data sources such as travel surveys. However, constructing OD matrices from mobile phone data (MPD) entails multiple challenges, and the lack of ground truth hampers the evaluation and validation of the estimated matrices. Furthermore, national laws may prohibit the distribution of MPD for research purposes, compelling researchers to work with pre-compiled OD matrices with no insight into the methods used. In this paper, we analyse a set of such pre-compiled OD matrices from the greater Oslo area and perform validation procedures against several sources to assess the quality and robustness of the OD matrices as well as their usefulness in transportation planning applications. We find that while the OD matrices correlate well with other sources at a low resolution, the reliability decreases when a finer level of detail is chosen, particularly when comparing shorter trips between neighbouring areas. Our results suggest that coarseness of data and privacy concerns restrict the usefulness of MPD in transport research in the case where OD matrices are pre-compiled by the operator.

  相似文献   

14.
Previous research has combined automated fare-collection (AFC) and automated vehicle-location (AVL) data to infer the times and locations of passenger origins, interchanges (transfers), and destinations on multimodal transit networks. The resultant origin–interchange–destination flows (and the origin–destination (OD) matrices that comprise those flows), however, represent only a sample of total ridership, as they contain only those journeys made using the AFC payment method that have been successfully recorded or inferred. This paper presents a method for scaling passenger-journey flows (i.e., linked-trip flows) using additional information from passenger counts at each station gate and bus farebox, thereby estimating the flows of non-AFC passengers and of AFC passengers whose journeys were not successfully inferred.The proposed method is applied to a hypothetical test network and to AFC and AVL data from London’s multimodal public transit network. Because London requires AFC transactions upon both entry and exit for rail trips, a rail-only OD matrix is extracted from the estimated multimodal linked-trip flows, and is compared to a rail OD matrix generated using the iterative proportional fitting method.  相似文献   

15.
Conventional methods for estimating origin-destination (O-D) trip matrices from link traffic counts assume that route choice proportions are given constants. In a network with realistic congestion levels, this assumption does not hold. This paper shows how existing methods such as the generalized least squares technique can be integrated with an equilibrium traffic assignment in the form of a convex bilevel optimization problem. The presence of measurement errors and time variations in the observed link flows are explicitly considered. The feasibility of the model is always guaranteed without a requirement for estimating consistent link flows from counts. A solution algorithm is provided and numerical simulation experiments are implemented in investigating the model's properties. Some related problems concerning O-D matrix estimation are also discussed.  相似文献   

16.
Abstract

Under Intelligent Transportation Systems (ITS), real-time operations of traffic management measures depend on long-term planning results, such as the origin–destination (OD) trip distribution; however, results from current planning procedures are unable to provide fundamental data for dynamic analysis. In order to capture dynamic traffic characteristics, transportation planning models should play an important role to integrate basic data with real-time traffic management and control. In this paper, a heuristic algorithm is proposed to establish the linkage between daily OD trips and dynamic traffic assignment (DTA) procedures; thus results from transportation planning projects, in terms of daily OD trips, can be extended to estimate time-dependent OD trips. Field data from Taiwan are collected and applied in the calibration and validation processes. Dynamic Network Assignment-Simulation Model for Advanced Road Telematics (DYNASMART-P), a simulation-based DTA model, is applied to generate time-dependent flows. The results from the validation process show high agreement between actual flows from vehicle detectors (VDs) and simulated flows from DYNAMSART-P.  相似文献   

17.
This paper presents a procedure for the estimation of origin‐destination (O‐D) matrices for a multimodal public transit network. The system consists of a number of favored public transit modes that are obtained from a modal split process in a traditional four‐step transportation model. The demand of each favored mode is assigned to the multimodal network, which is comprised of a set of connected links of different public transit modes. An entropy maximization procedure is proposed to simultaneously estimate the O‐D demand matrices of all favored modes, which are consistent with target data sets such as the boarding counts and line segment flows that are observed directly in the network. A case study of the Hong Kong multimodal transit network is used to demonstrate the effectiveness of the proposed methodology.  相似文献   

18.
The traditional approach to origin–destination (OD) estimation based on data surveys is highly expensive. Therefore, researchers have attempted to develop reasonable low-cost approaches to estimating the OD vector, such as OD estimation based on traffic sensor data. In this estimation approach, the location problem for the sensors is critical. One type of sensor that can be used for this purpose, on which this paper focuses, is vehicle identification sensors. The information collected by these sensors that can be employed for OD estimation is discussed in this paper. We use data gathered by vehicle identification sensors that include an ID for each vehicle and the time at which the sensor detected it. Based on these data, the subset of sensors that detected a given vehicle and the order in which they detected it are available. In this paper, four location models are proposed, all of which consider the order of the sensors. The first model always yields the minimum number of sensors to ensure the uniqueness of path flows. The second model yields the maximum number of uniquely observed paths given a budget constraint on the sensors. The third model always yields the minimum number of sensors to ensure the uniqueness of OD flows. Finally, the fourth model yields the maximum number of uniquely observed OD flows given a budget constraint on the sensors. For several numerical examples, these four models were solved using the GAMS software. These numerical examples include several medium-sized examples, including an example of a real-world large-scale transportation network in Mashhad.  相似文献   

19.
A procedure for the simultaneous estimation of an origin–destination (OD) matrix and link choice proportions from OD survey data and traffic counts for congested network is proposed in this paper. Recognizing that link choice proportions in a network change with traffic conditions, and that the dispersion parameter of the route choice model should be updated for a current data set, this procedure performs statistical estimation and traffic assignment alternately until convergence in order to obtain the best estimators for both the OD matrix and link choice proportions, which are consistent with the survey data and traffic counts.Results from a numerical study using a hypothetical network have shown that a model allowing θ to be estimated simultaneously with an OD matrix from the observed data performs better than the model with a fixed predetermined θ. The application of the proposed model to the Tuen Mun Corridor network in Hong Kong is also presented in this paper. A reasonable estimate of the dispersion parameter θ for this network is obtained.  相似文献   

20.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号