首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surrogate indicators are meant to be alternatives or complements of safety analyses based on accident records. These indicators are used to study critical traffic events that occur more frequently, making such incidents easier to analyse. This article provides an overview of existing surrogate indicators and specifically focuses on their merit for the analyses of vulnerable road users and the extent to which they have been validated by previous research. Each indicator is evaluated based on its ability to consider the collision risk, which can be further divided into the initial conditions of an event, the magnitude of any evasive action and the injury risk in any traffic event. The results show that various indicators and their combinations can reflect different aspects of any traffic event. However, no existing indicator seems to capture all aspects. Various studies have also focused on the validity of different indicators. However, due to the use of diverse approaches to validation, the large difference in how many locations were investigated and variations in the duration of observation at each location, it is difficult to compare and discuss the validity of the different surrogate safety indicators. Since no current indicator can properly reflect all the important aspects underlined in this article, the authors suggest that the choice of a suitable indicator in future surrogate safety studies should be made with considerations of the context-dependent suitability of the respective indicator.  相似文献   

2.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

3.
Macroscopic pedestrian models for bidirectional flow analysis encounter limitations in describing microscopic dynamics at crosswalks. Pedestrian behavior at crosswalks is typically characterized by the evasive effect with conflicting pedestrians and vehicles and the following effect with leading pedestrians. This study proposes a hybrid approach (i.e., route search and social force-based approach) for modeling of pedestrian movement at signalized crosswalks. The key influential factors, i.e., leading pedestrians, conflict with opposite pedestrians, collision avoidance with vehicles, and compromise with traffic lights, are considered. Aerial video data collected at one intersection in Beijing, China were recorded and extracted. A new calibration approach based on a genetic algorithm is proposed that enables optimization of the relative error of pedestrian trajectory in two dimensions, i.e., moving distance and angle. Model validation is conducted by comparison with the observed trajectories in five typical cases of pedestrian crossing with or without conflict between pedestrians and vehicles. The characteristics of pedestrian flow, speed, acceleration, pedestrian-vehicle conflict, and the lane formation phenomenon were compared with those from two competitive models, thus demonstrating the advantage of the proposed model.  相似文献   

4.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The main objective of this study is to investigate the relationship between field‐measured conflicts and simulated conflicts estimated from microsimulation model (PARAMICS) using the surrogate safety assessment model. An urban signalized intersection was selected for analysis. Automated video‐based computer vision techniques were used to identify field conflicts. The applicability of a two‐step model calibration procedure applied to VISSIM in a recent study was investigated using PARAMICS. In the first calibration step, the PARAMICS model was calibrated to ensure that the simulation gives reasonable results of average delay times. The second calibration step used a genetic algorithm procedure to calibrate PARAMICS parameters to enhance the correlation between simulated and field‐measured conflicts. Finally, the results obtained from PARAMICS were compared with results obtained from VISSIM. The comparison included three aspects: (i) the car‐following model and safety‐related parameters; (ii) the correlation between simulated and field‐measured conflicts; and (iii) the conflict spatial distributions. The results show that the default simulation model parameters give poor correlation with the field‐measured data, and therefore, using simulation models without a proper calibration should be avoided. Overall, good correlation between field‐measured and simulated conflicts was obtained after calibration for both models, especially at higher time‐to‐collision (TTC) values. At TTC threshold of 1.5 s, PARAMICS overestimates the number of conflicts and VISSIM underestimates it. Both models overestimated the number of conflicts at TTC threshold of 3.00 s. There were major differences between field‐measured and simulated conflicts spatial distributions for both simulation models. This indicates that despite the good correlation obtained from the calibration process, both PARAMICS and VISSIM do not capture the actual conflict occurrence mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This article describes a novel approach for the binary classification of two‐wheeler road users in a dense mixed traffic intersection. The classification is a supervised procedure to differentiate between motorized and non‐motorized (human‐powered) bikes. Road users were first detected and tracked using object recognition methods. Classification features were then selected from the collected trajectories. The features include maximum speed, cadence frequency in addition to acceleration‐based parameters. Experiments were conducted on a video data set from Shanghai, China, where cyclists as well as motorcycles tend to share the main road facilities. A sensitivity analysis was performed to assess the quality of the selected features in improving the accuracy of the classification. A performance analysis demonstrated the robustness of the proposed classification method with a correct classification rate of up to 93%. This research contributes to the literature of automated data collection and can benefit the applications in many transportation‐related fields such as shared space facility planning, simulation models for two‐wheelers, and behavior analysis and road safety studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

8.
This study proposed a behavioral theory‐based approach to better assess pedestrian levels of service for sidewalks, using the concepts of personal space and pedestrian evasive movements. Data from pedestrian interviews and video recordings at 28 commercial, residential, and leisure locations were used to analyze the effects of pedestrian movements on pedestrian perceived levels of service. With these results, a new measure of pedestrian level of service was developed. With the use of a separate validation sample, the revised levels of service obtained were found to be more consistent with the pedestrian perceived levels than the levels prescribed by the Korean Highway Capacity Manual. Hence, this research recommended the use of the revised measures for pedestrian level of service in the design and evaluation of pedestrian facilities. We also found that pedestrian evasive movements on sidewalks could better explain pedestrians' perception of the levels of service for a given facility. Moreover, pedestrian evasive movements were found to be sensitive to the width of the sidewalk and pedestrian volume. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Video monitoring of traffic is a common practice in major cities. The data generated by video monitoring has practical uses such as traffic analysis for city planning. However, the usefulness of video monitoring of traffic is limited unless there is also a reliable way to automatically classify road users. This paper presents an automated method of road users’ classification into vehicles, cyclists, and pedestrians by using their motion cues. In this method, the movement of road users was captured on sequences of video frames. The videos were analysed using a feature-based tracking system, which has returned the tracks of road users. The separate pieces of information gained from these tracks are hereafter called Classifiers. There are nineteen classifiers included in this method. The classifiers’ values were assessed and integrated into a fuzzy membership framework, which in turn required prior configurations to be available. This led to the final classification of road users. The performance of this method demonstrated promising results. An important contribution of this paper is the creation of a robust approach that can integrate different classifiers using fuzzy membership framework. The developed method also uses parametric classifiers, which do not depend on the specific geometry or traffic operation of the intersection. This is a key advantage because it enables transferability and improves the practicality and usefulness of the method.  相似文献   

10.
At frontage road intersections located downstream of freeway off-ramps, the use of dual right-turn lanes may provide improved weaving environments for right-turning vehicles from the off-ramp and reduce forced merges toward the desired right-turn bay. This paper investigates the safety impacts of the installation of dual right-turn lanes at frontage road intersections. A two-stage approach is used to estimate weaving conflicts as safety surrogates. In the first stage, micro-simulation models are calibrated based on field data to simulate vehicle trajectories. In the second stage, the trajectories are processed to estimate surrogate safety measures and frequency of weaving conflicts under different conditions. The two-stage approach is validated by correlation analysis between predicted weaving conflicts and actual crash rates. The results show that dual right-turn lanes can reduce weaving conflicts significantly compared to single exclusive right-turn lanes, and the safety benefits increase exponentially as weaving distance is reduced.  相似文献   

11.
12.
城市平面交叉口是城市交通冲突和事故频繁发生的地点。文章针对城市道路平面交叉口的交通安全现状,分析了平面交叉口的安全影响因素,提出引入事故率和冲突率为评价指标,建立了灰色理论评价方法,为城市道路平面交叉口的安全治理提供理论支持。  相似文献   

13.
Wang  Kailai  Akar  Gulsah 《Transportation》2019,46(6):2117-2136

Autonomous vehicles (AVs), with an expectation of improving road safety, are closer to becoming a reality. A large number of people are still concerned about how AVs would operate in real-life driving environments. The present paper investigates the factors that affect people’s views of the interactions between AVs and other road users based on a large sample from the 2015 and 2017 Puget Sound Travel Surveys. We specifically highlight the effects of the neighborhood environment and road infrastructure. We estimate a generalized ordered logit model to demonstrate the extent to which certain neighborhood environment and road infrastructure features affect individuals’ safety perceptions of AVs, controlling for demographics, daily travel patterns, and general interest in riding AVs. The results reveal that designated bicycle facilities are positively associated with individuals’ safety perceptions related to AVs. We find that residents from neighborhoods with more pedestrian facilities are more likely to express higher levels of concern on AVs’ capabilities to react to the environment. Our results also suggest that people living in mixed-use neighborhoods are more confident in sharing the road with AVs. The findings provide useful implications for effective policy interventions and infrastructure provisions that may affect the market penetration rates of AVs while keeping up the standards for other road users, such as bicyclists and pedestrians.

  相似文献   

14.
The safety of signalized intersections has often been evaluated at an aggregate level relating collisions to annual traffic volume and the geometric characteristics of the intersection. However, for many safety issues, it is essential to understand how changes in traffic parameters and signal control affect safety at the signal cycle level. This paper develops conflict-based safety performance functions (SPFs) for signalized intersections at the signal cycle level. Traffic video-data was recorded for six signalized intersections located in two cities in Canada. A video analysis procedure is proposed to collect rear-end conflicts and various traffic variables at each signal cycle from the recorded videos. The traffic variables include: traffic volume, maximum queue length, shock wave characteristics (e.g. shock wave speed and shock wave area), and the platoon ratio. The SPFs are developed using the generalized linear models (GLM) approach. The results show that all models have good fit and almost all the explanatory variables are statistically significant leading to better prediction of conflict occurrence beyond what can be expected from the traffic volume only. Furthermore, space-time conflict heat maps are developed to investigate the distribution of the traffic conflicts. The heat maps illustrate graphically the association between rear-end conflicts and various traffic parameters. The developed models can give insight about how changes in the signal cycle design affect the safety of signalized intersections. The overall goal is to use the developed models for the real-time optimization of signalized intersection safety by changing the signal design.  相似文献   

15.
In India pedestrians usually cross the road at mid-block crosswalks due to ease of access to their destination or the development of adjacent land use types such as shopping, business areas, school and residential areas. The behaviour of pedestrian will change with respect to different land use type and this change in behaviour of pedestrian further reflects change in perceived level of service (LOS). So, it is important to evaluate the quality of service of such crossing facilities with respect to different land-use type under mixed traffic conditions. In this framework, pedestrian perceived LOS were collected with respect to different land-use type such as shopping, residential and business areas. The ordered probit (OP) model was developed by using NLOGIT software package, with number of vehicles encountered, road crossing difficulty as well as safety considered as primary factors along with pedestrian individual factors (gender and age), land-use type and roadway geometry. From the model results, it has been concluded that perceived safety, crossing difficulty, land-use condition, number of vehicles encountered, median width and number of lanes have significant effect on pedestrian perceived LOS at unprotected (un-signalized) mid-block crosswalks in mixed traffic scenario. The inferences of these results highlights the importance of land use planning in designing a new set of pedestrian access facilities for unprotected mid-block crosswalks under mixed traffic conditions. Also the study results would be useful for evaluating pedestrian accessibility taking into account different land-use type and planning required degree of segregation with vehicular movement at unprotected mid-block crosswalk locations.  相似文献   

16.
This paper presents analytical models that describe the safety of unstructured and layered en route airspace designs. Here, ‘unstructured airspace’ refers to airspace designs that offer operators complete freedom in path planning, whereas ‘layered airspace’ refers to airspace concepts that utilize heading-altitude rules to vertically separate cruising aircraft based on their travel directions. With a focus on the intrinsic safety provided by an airspace design, the models compute instantaneous conflict counts as a function of traffic demand and airspace design parameters, such as traffic separation requirements and the permitted heading range per flight level. While previous studies have focused primarily on conflicts between cruising aircraft, the models presented here also take into account conflicts involving climbing and descending traffic. Fast-time simulation experiments used to validate the modeling approach indicate that the models estimate instantaneous conflict counts with high accuracy for both airspace designs. The simulation results also show that climbing and descending traffic caused the majority of conflicts for layered airspaces with a narrow heading range per flight level, highlighting the importance of including all aircraft flight phases for a comprehensive safety analysis. Because such trends could be accurately predicted by the three-dimensional models derived here, these analytical models can be used as tools for airspace design applications as they provide a detailed understanding of the relationships between the parameters that influence the safety of unstructured and layered airspace designs.  相似文献   

17.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
文章提出了潜在冲突量的概念,并对其进行了分类,通过车速、交通量、车道宽度等易获取的交通参数来推算交叉口潜在冲突量,引入混合交通当量,将潜在冲突量与混合交通当量比值作为交叉口安全评价的指标,并结合桂林市的9个交叉口进行了安全程度的评价。  相似文献   

19.
In this paper, we report on the construction of a new framework for simulating mixed traffic consisting of cars, trams, and pedestrians that can be used to support discussions about road management, signal control, and public transit. Specifically, a layered road structure that was designed for car traffic simulations was extended to interact with an existing one-dimensional (1D) car-following model and a two-dimensional (2D) discrete choice model for pedestrians. The car model, pedestrian model, and interaction rules implemented in the proposed framework were verified through simulations involving simple road environments. The resulting simulated values were in near agreement with the empirical data. We then used the proposed framework to assess the impact of a tramway extension plan for a real city. The simulation results showed that the impact of the proposed tramway on existing car traffic would not be serious, and by extension, implied that the proposed framework could help stakeholders decide on expansion scenarios that are satisfactory to both tram users and private car owners.  相似文献   

20.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号