首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Understanding the dynamics of boarding/alighting activities and its impact on bus dwell times is crucial to improving bus service levels. However, research is limited as conventional data collection methods are both time and labour intensive. In this paper, we present the first use of smart card data to study passenger boarding/alighting behaviour and its impact on bus dwell time. Given the nature of these data, we focus on passenger activity time and do not account for the time necessary to open and close doors. We study single decker, double decker and articulated buses and identify the specific effects of floor/entrance type, number of activities and occupancy on both boarding and alighting dynamics. A linear relationship between average boarding and alighting times and their respective standard deviations is also found, whereas the variability of boarding and alighting time decreases with the number of passengers boarding and alighting. After observing the cumulative boarding/alighting processes under different occupancy conditions, we propose a new model to estimate passenger activity time, by introducing critical occupancy – a parameter incorporating the friction between boarding/alighting and on-board passengers. We conduct regression analyses with the proposed and another popular model for simultaneous boarding/alighting processes, finding that the critical occupancy plays a significant role in determining the regime of boarding and alighting processes and the overall activity time. Our results provide potential implications for practice and policy, such as identifying optimal vehicle type for a particular route and modelling transit service reliability.  相似文献   

2.
Bus arrival time is usually estimated using the boarding time of the first passenger at each station. However, boarding time data are not recorded in certain double-ticket smart card systems. As many passengers usually swipe the card much before their alighting, the first or the average alighting time cannot represent the actual bus arrival time, either. This lack of data creates difficulties in correcting bus arrival times. This paper focused on developing a model to calculate bus arrival time that combined the alighting swiping time from smart card data with the actual bus arrival time by the manual survey data. The model was built on the basis of the frequency distribution and the regression analysis. The swiping time distribution, the occupancy and the seating capacity were considered as the key factors in creating a method to calculate bus arrival times. With 1011 groups of smart card data and 360 corresponding records from a manual survey of bus arrival times, the research data were divided into two parts stochastically, a training set and a test set. The training set was used for the parameter determination, and the test set was used to verify the model’s precision. Furthermore, the regularity of the time differences between the bus arrival times and the card swiping times was analyzed using the “trend line” of the last swiping time distribution. Results from the test set achieved mean and standard error rate deviations of 0.6% and 3.8%, respectively. The proposed model established in this study can improve bus arrival time calculations and potentially support state prediction and service level evaluations for bus operations.  相似文献   

3.
Abstract

A model is proposed to calculate the overall operating and delay times spent at bus stops due to passenger boarding and alighting and the time lost to queuing caused by bus stop saturation. A formula for line demand at each stop and the interaction between the buses themselves is proposed and applied to different bus stops depending on the number of available berths. The application of this model has quantified significant operational delays suffered by users and operator due to consecutive bus arrival at stops, even with flows below bus stop capacity.  相似文献   

4.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Train dwell time is one of the most unpredictable components of railway operations, mainly because of the varying volumes of alighting and boarding passengers. However, for reliable estimations of train running times and route conflicts on main lines, it is necessary to obtain accurate estimations of dwell times at the intermediate stops on the main line, the so‐called short stops. This is a great challenge for a more reliable, efficient and robust train operation. Previous research has shown that the dwell time is highly dependent on the number of boarding and alighting passengers. However, these numbers are usually not available in real time. This paper discusses the possibility of a dwell time estimation model at short stops without passenger demand information by means of a statistical analysis of track occupation data from the Netherlands. The analysis showed that the dwell times are best estimated for peak and off‐peak hours separately. The peak‐hour dwell times are estimated using a linear regression model of train length, dwell times at previous stops and dwell times of the preceding trains. The off‐peak‐hour dwell times are estimated using a non‐parametric regression model, in particular, the k‐nearest neighbor model. There are two major advantages of the proposed estimation models. First, the models do not need passenger flow data, which is usually impossible to obtain in real time in practice. Second, detailed parameters of rolling stock configuration and platform layout are not required, which makes the model more generic and eases implementation. A case study at Dutch railway stations shows that the estimation accuracy is 85.8%–88.5% during peak hours and 80.1% during off‐peak hours, which is relatively high. We conclude that the estimation of dwell times at short stop stations without passenger data is possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This technical note examines the boarding and alighting times for elderly persons with respect to buses. The study was conducted with the assistance of Special Transport Service, a small-scale operation consisting of two buses. The main findings of the research are estimates for the boarding and alighting times for one ambulatory person: 2.328 minutes for boarding the bus and 1.002 minutes for alighting from the bus.  相似文献   

7.
The predictive accuracy of the models based on the fundamental relation between journey time and passenger demand can be improved through data disaggregation or route segmentation. Primary reason for this is the improvement in the estimates of stopping delays and delays due to passenger boarding and/or alighting (dwell time). Both Poisson and Negative Binomial model estimates of stoppings for passenger boarding and alighting are shown to improve with disaggregation. These improvements, however, contribute little to the overall predictability of the fundamental models which are useful for gaining insight into the significance and variability of the stopping delays and dwell time, or testing sensitivity to changes in the long term. Site or route specific models of journey times which have better predictive capability exist, and may be used for short-run planning. However, the interchangeability and performance over time of the latter, have to be evaluated before making definitive conclusions.  相似文献   

8.
《运输规划与技术》2012,35(8):825-847
ABSTRACT

In recent years, public transport has been developing rapidly and producing large amounts of traffic data. Emerging big data-mining techniques enable the application of these data in a variety of ways. This study uses bus intelligent card (IC card) data and global positioning system (GPS) data to estimate passenger boarding and alighting stations. First, an estimation model for boarding stations is introduced to determine passenger boarding stations. Then, the authors propose an innovative uplink and downlink information identification model (UDI) to generate information for estimating alighting stations. Subsequently, the estimation model for the alighting stations is introduced. In addition, a transfer station identification model is also developed to determine transfer stations. These models are applied to Yinchuan, China to analyze passenger flow characteristics and bus operations. The authors obtain passenger flows based on stations (stops), bus lines, and traffic analysis zones (TAZ) during weekdays and weekends. Moreover, average bus operational speeds are obtained. These findings can be used in bus network planning and optimization as well as bus operation scheduling.  相似文献   

9.
This paper proposes a frequency-based assignment model that considers travellers probability of finding a seat in their perception of route cost and hence also their route choice. The model introduces a “fail-to-sit” probability at boarding points with travel costs based on the likelihood of travelling seated or standing. Priority rules are considered; in particular it is assumed that standing on-board passengers will occupy any available seats of alighting passengers before newly boarding passengers can fill any remaining seats. At the boarding point passengers are assumed to mingle, meaning that FIFO is not observed, as is the case for many crowded bus and metro stops, particularly in European countries. The route choice considers the common lines problem and an user equilibrium solution is sought through a Markov type network loading process and the method of successive averages. The model is first illustrated with a small example network before being applied to the inner zone of London’s underground network. The effect of different values passengers might attach to finding a seat are illustrated. Applications of the model for transit planning as well as for information provision at the journey planner stage are discussed.  相似文献   

10.
In this paper, we propose an agent-based simulation approach that is capable of simulating the flow of passengers on board buses and at bus stops. The intention is that it will be applied during vehicle development to analyze how vehicle design affects passenger flow, and thus also how it affects system performance such as dwell time. In turn, this could aid the developers in making design decisions early in the development process. Besides introducing the simulation tool itself, the paper explores the realism of the data generated by the tool. A number of passenger flow experiments featuring a full-scale bus mockup and 50 participants were carried out. The setup of these experiments mirrored a number of ‘bus journeys’ (regarding vehicle design, number of passengers boarding/alighting at each stop and so on) that had previously been simulated using the simulation tool. When the data from the simulations were compared with the data from the passenger flow experiments, it could be concluded that the tool is indeed able to generate realistic passenger flows, although with some errors when a large number of passengers board/alight. The simulated dwell times were rationally affected by the tested bus layout aspects. It was concluded that the tool makes it possible to evaluate how variations in bus layouts affect passenger flow, providing data of sufficiently high quality to be useful in early phases of vehicle design.  相似文献   

11.
A significant proportion of bus travel time is contributed by dwell time for passenger boarding and alighting. More accurate estimation of bus dwell time (BDT) can enhance efficiency and reliability of public transportation system. Regression and probabilistic models are commonly used in literatures where a set of independent variables are used to define the statistical relationship between BDT and its contributing factors. However, due to technical and monetary constraints, it is not always feasible to collect all the data required for the models to work. More importantly, the contributing factors may vary from one bus route to another. Time series based methods can be of great interest as they require only historical time series data, which can be collected using a facility known as automatic vehicle location (AVL) system. This paper assesses four different time series based methods namely random walk, exponential smoothing, moving average (MA), and autoregressive integrated moving average to model and estimate BDT based on AVL data collected from Auckland. The performances of the proposed methods are ranked based on three important factors namely prediction accuracy, simplicity, and robustness. The models showed promising results and performed differently for central business district (CBD) and non‐CBD bus stops. For CBD bus stops, MA model performed the best, whereas for non‐CBD bus stops, ARIMA model performed the best compared with other time series based models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Transit systems are subject to congestion that influences system performance and level of service. The evaluation of measures to relieve congestion requires models that can capture their network effects and passengers' adaptation. In particular, on‐board congestion leads to an increase of crowding discomfort and denied boarding and a decrease in service reliability. This study performs a systematic comparison of alternative approaches to modelling on‐board congestion in transit networks. In particular, the congestion‐related functionalities of a schedule‐based model and an agent‐based transit assignment model are investigated, by comparing VISUM and BusMezzo, respectively. The theoretical background, modelling principles and implementation details of the alternative models are examined and demonstrated by testing various operational scenarios for an example network. The results suggest that differences in modelling passenger arrival process, choice‐set generation and route choice model yield systematically different passenger loads. The schedule‐based model is insensitive to a uniform increase in demand or decrease in capacity when caused by either vehicle capacity or service frequency reduction. In contrast, nominal travel times increase in the agent‐based model as demand increases or capacity decreases. The marginal increase in travel time increases as the network becomes more saturated. Whilst none of the existing models capture the full range of congestion effects and related behavioural responses, existing models can support different planning decisions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
If bus service departure times are not completely unknown to the passengers, non-uniform passenger arrival patterns can be expected. We propose that passengers decide their arrival time at stops based on a continuous logit model that considers the risk of missing services. Expected passenger waiting times are derived in a bus system that allows also for overtaking between bus services. We then propose an algorithm to derive the dwell time of subsequent buses serving a stop in order to illustrate when bus bunching might occur. We show that non-uniform arrival patterns can significantly influence the bus bunching process. With case studies we find that, even without exogenous delay, bunching can arise when the boarding rate is insufficient given the level of overall demand. Further, in case of exogenous delay, non-uniform arrivals can either worsen or improve the bunching conditions, depending on the level of delay. We conclude that therefore such effects should be considered when service control measures are discussed.  相似文献   

14.
The standing-time of trains at urban rail stations is pertinent to determining the line capacity and fleet size. The assumption of uniform boarding and alighting leads to under-estimation of the standing time. It is shown that the train standing-time is related to the fraction of boarders and the maximum demand for boarding and alighting at a door. It is further shown that the probability distribution of passengers at a door depends on the platform entrance locations. A methodology that takes into account the above factors is proposed for estimating the train standing-time.  相似文献   

15.
We consider inferring transit route‐level origin–destination (OD) flows using large amounts of automatic passenger counter (APC) boarding and alighting data based on a statistical formulation. One critical problem is that we need to enumerate the OD flow matrices that are consistent with the APC data for each bus trip to evaluate the model likelihood function. The OD enumeration problem has not been addressed satisfactorily in the literature. Thus, we propose a novel sampler to avoid the need to enumerate OD flow matrices by generating them recursively from the first alighting stop to the last stop of the bus route of interest. A Markov chain Monte Carlo (MCMC) method that incorporates the proposed sampler is developed to simulate the posterior distributions of the OD flows. Numerical investigations on an operational bus route under a realistic OD structure demonstrate the superiority of the proposed MCMC method over an existing MCMC method and a state‐of‐the‐practice method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The train standing-time at a station is a determinant of the line capacity and the necessary fleet-size. Its determination is usually based on the assumption that boarding and alighting is uniform at all doors of a train. Uniform boarding and alighting is conceivable if passengers distribute themselves uniformly on station platforms while waiting for trains. The validity of the uniformity assumptions is tested using data from two stations (one CBD, one suburban) of the Calgary, Alberta LRT system. It is shown that passenger distribution on the platform, alighting and boarding is not uniform and is closely related to the location of platform access points. Some strategies that will encourage uniformity are discussed. However, procedures that can estimate the standing time for non-uniform boarding and alighting need to be developed.  相似文献   

18.
This paper describes the application of a capacity restraint trip assignment algorithm to a real, large‐scale transit network and the validation of the results. Unlike the conventional frequency‐based approach, the network formulation of the proposed model is dynamic and schedule‐based. Transit vehicles are assumed to operate to a set of pre‐determined schedules. Passengers are assumed to select paths based on a generalized cost function including in‐vehicle and out‐of‐vehicle time and line change penalty. The time‐varying passenger demand is loaded onto the network by a time increment simulation method, which ensures that the capacity restraint of each vehicle during passenger boarding is strictly observed. The optimal‐path and path‐loading algorithms are applied iteratively by the method of successive averages until the network converges to the predictive dynamic user equilibrium. The Hong Kong Mass Transit Railway network is used to validate the model results. The potential applications of the model are also discussed.  相似文献   

19.
Smart card data are increasingly used for transit network planning, passengers’ behaviour analysis and network demand forecasting. Public transport origin–destination (O–D) estimation is a significant product of processing smart card data. In recent years, various O–D estimation methods using the trip-chaining approach have attracted much attention from both researchers and practitioners. However, the validity of these estimation methods has not been extensively investigated. This is mainly because these datasets usually lack data about passengers’ alighting, as passengers are often required to tap their smart cards only when boarding a public transport service. Thus, this paper has two main objectives. First, the paper reports on the implementation and validation of the existing O–D estimation method using the unique smart card dataset of the South-East Queensland public transport network which includes data on both boarding stops and alighting stops. Second, the paper improves the O–D estimation algorithm and empirically examines these improvements, relying on this unique dataset. The evaluation of the last destination assumption of the trip-chaining method shows a significant negative impact on the matching results of the differences between actual boarding/alighting times and the public transport schedules. The proposed changes to the algorithm improve the average distance between the actual and estimated alighting stops, as this distance is reduced from 806 m using the original algorithm to 530 m after applying the suggested improvements.  相似文献   

20.
Development of an origin-destination demand matrix is crucial for transit planning. The development process is facilitated by automated transit smart card data, making it possible to mine boarding and alighting patterns on an individual basis. This research proposes a novel trip chaining method which uses Automatic Fare Collection (AFC) and General Transit Feed Specification (GTFS) data to infer the most likely trajectory of individual transit passengers. The method relaxes the assumptions on various parameters used in the existing trip chaining algorithms such as transfer walking distance threshold, buffer distance for selecting the boarding location, time window for selecting the vehicle trip, etc. The method also resolves issues related to errors in GPS location recorded by AFC systems or selection of incorrect sub-route from GTFS data. The proposed trip chaining method generates a set of candidate trajectories for each AFC tag to reach the next tag, calculates the probability of each trajectory, and selects the most likely trajectory to infer the boarding and alighting stops. The method is applied to transit data from the Twin Cities, MN, which has an open transit system where passengers tap smart cards only once when boarding (or when alighting on pay-exit buses). Based on the consecutive tags of the passenger, the proposed algorithm is also modified for pay-exit cases. The method is compared to previous methods developed by the researchers and shows improvement in the number of inferred cases. Finally, results are visualized to understand the route ridership and geographical pattern of trips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号